Ergodic capacity of internet of things’ devices in presence of channel state information imperfection
Dinh-Thuan Do, Anh-Tu Le
Abstract
Non-orthogonal multiple access (NOMA) is deployed to improve spectral efficiency for applications in fifth generation networks. NOMA system splits power domain to many parts to further serve massive users by relaxing the orthogonal use of radioresources. In this paper, a relay is required to help the source communicate with destinations with a fixed power allocation scheme. We derive expressions to highlight ergodic performance of two users the deployment of NOMA is suitable to different rate requirements from destinations (e.g., a cellular users have different requirements compared with internet of things devices). By conducting Monte-Carlo simulations, we find main system parameters which have crucial impacts on ergodic capacity. This paper is different other recent studies since we emphasize on imperfect channel state information (CSI) and Rician fading model for our analytical results.
Keywords
Channel state information; Ergodic capacity; Internet of things
DOI:
https://doi.org/10.11591/eei.v11i2.3138
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div> Bulletin of EEI Stats