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 The phase synchronization control technique of shunt active power filter 

(SAPF) is discussed in this article. Due to the harmful effects of harmonic 

currents on power systems, the issue of decreasing their effects has 

generated a lot of research. A SAPF is acknowledged as the most 

dependable instrument in this area. The SAPF will detects the current 

harmonics present in the power system and also generates and injects the 

corrective current mitigation in the power system to reduce the current 

harmonics. This implies that, aside from the capacity to create compensating 

current, it is more essential to ensure that the SAPF can work in phase with 

the operational power system so that the compensating current will properly 

injected. As a result, while constructing SAPF control algorithms, correct 

synchronisation techniques must be incorporated. In this article, the different 

types of phase synchronization approach have been discussed such as phase-

locked loop (PLL), adaptive linear neuron (Adaline), and unit vector. The 

results of the study may be used as a guideline and source of information for 

determining the best method for synchronising SAPF with the associated 

power system. 
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1. INTRODUCTION 

The nonlinear loads' widespread use has resulted in serious issues of power quality, primarily 

harmonic degradation problems in the electrical distribution systems. In general, the current harmonics can 

reduce the power quality of the system by raising the total harmonic distortion (THD). Moreover, the current 

harmonics are the main source for decreasing the efficiency of the system overheating of the system, and 

failure of system devices [1]–[3]. To protect the system from the failure and maintain harmonic in the 

electrical system within a prescribed limit, a passive filter play the important role in electrical distribution system.  

To solve a specific harmonic problem, harmonic filters are usually constructed with passive filters 

such as inductors and capacitors [4]–[6]. But, passive filters are good enough to filter out a certain harmonic 

order. In other hand, these kinds of filters are suffered with tuning and harmonic resonance problems and 

large filter size requirement as well. To solve the problems of the conventional passive filter, a shunt active 

power filter (SAPF) approach is adapted by the various authors in the literature [7]. However, active power 

filters (APFs), which provide a variety of solutions to harmonic problems, quickly replace these due to their 

intrinsic faults [8]. APF technology is advancing because of its greater mitigating capabilities. APFs are 

currently accessible in a variety of forms that may be divided into many broad groups. According to  

Anzalchi et al. [9], APF can be classified based on i) connection to the power system, ii) power rating, iii) 

https://creativecommons.org/licenses/by-sa/4.0/
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types of power converter employed, iv) power converter employed, and v) characteristics of power system. 

Nonetheless, as evidenced by the literature [10]. SAPF are the generally valuable filter for the reduction of 

harmonic currents.  

The SAPF is measuring the current harmonic contamination of the power system, and provides the 

corrective current mitigation to the harmonic power system to decrease the harmonics in the system. 

However, the use of SAPF in distribution network has the difficulties of synchronization. The phase 

synchronization is one of the most significant concerns, In order to provide steady and continuous mitigation 

ability, the generated output voltage must be precisely coordinated with the grid voltage [11]. 

In this context, phase synchronization can be defined as the process of reducing phase 

differences between the grid voltage and the SAPF output voltage while also matching the operational 

frequencies [12], [13]. Before connecting the SAPF to the chosen power system, this step must be done in 

order for the power system and the synchronised SAPF to work together and control techniques are discussed 

in details [14]. In order to overcome the challenges and problems associated with phase synchronisation, 

different methods with specific advantages for synchronising grid-connected inverters have been presented. 

In this article, the numerous types of phase synchronization methods are applied to the SAPF is discussed in 

details [15]. Researchers should be able to use the findings of this study to help them choose the best 

synchronization method for their SAPF, and it may even inspire them to come up with new ideas for 

enhancing SAPF synchronizing. 

The block diagram of voltage source inverter based SAPF with non-linear load is given in Figure 1. 

The SAPF consists of four control algorithms to control the system. Normally, the SAPF is connected 

between the source and non-linear load at pearson correlation coefficient (PCC) to reduce the harmonics. 

From literature, the harmonic producing loads are commonly used uncontrolled bridge rectifier with the 

combination of resistor, inductor, and capacitor [16], [17]. The block diagram of SAPF has two parts: i) 

power converter with power semi-conductor switches and ii) control circuit to operate the switches. 
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Figure 1. Block diagram of SAPF 

 

 

The SAPF working is very simple and easy to control. The advantages of SAPF are reduction of 

harmonics, power factor improvement, DC voltage regulation, elimination of resonance in the system [18]. 

At PCC, by applying Kirchhoff's current law (KCL), the harmonic current is polluting the system during the 

absence of SAPF. The source current is affecting due to harmonics [19] and it is given as in (1). 

 

𝑖𝑆 = 𝑖𝐿 = 𝑖𝑓𝐿 + 𝑖𝐻 (1) 

 

Where 𝑖𝑆 is source current, 𝑖𝐿 is load current, 𝑖𝑓𝐿 is fundamental current, 𝑖𝐻 is harmonic current. Note that the all 

current are generated by the non-linear loads. At this junction load current and source voltage is may not be in-phase.  

Now, the SAPF is installed at PCC, and then the two currents are flown in the system [20]. First, the 

injecting harmonic current 𝑖𝑖𝑛𝑗  is injected by SAPF to reduce the current harmonic s𝑖𝐻. Second, DC-link 

current 𝑖𝑑𝑐  which is used to continue constant dc voltage 𝑣𝑑𝑐 . Therefore, the source current 𝑖𝑆 is given as in (2). 
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𝑖𝑆 = (𝑖𝑓𝐿 + 𝑖𝐻) − 𝑖𝑖𝑛𝑗 + 𝑖𝑑𝑐  (2) 

 

By theoretical, the injected harmonic current 𝑖𝑖𝑛𝑗 is affected by dc-link voltage of capacitor. When 

voltage reaches to the preferred level, then injected current will be same as harmonic current 𝑖𝐻, they cancel 

out by themselves and (2) can be written as.  

 

𝑖𝑆 = 𝑖𝑓𝐿 + 𝑖𝑑𝑐  (3) 

 

At this point, by removing harmonic current 𝑖𝐻, the source current 𝑖𝑆 is regained its natural 

sinusoidal structure and 𝑖𝑆 is in-phase with 𝑣𝑆. Four different types of control algorithms must be introduced 

into the control system of the SAPF in order to successfully manage its operations. 

a. Harmonic extraction algorithm: this algorithm's primary purpose is to excerpt harmonic data from a 

power system that has been harmonically polluted. The collected data is then used to create a reference 

current signal, abbreviated iref. A few examples of frequently used strategies for this algorithm are the 

synchronous reference frame (SRF) or discrete quantum theory (dq theory) [21], instantaneous power 

pq theory [22], fast fourier transform (FFT) [23], and artificial neural network (ANN) [24], [25]. 

b. Synchronization algorithm: this algorithm's primary job is to track the angle of the source voltage signal 

VS and then produce a phase synchronisation angle to align the phase of the generated ire f with the 

phase of the running power system. As an illustration, consider the algorithm developed using the 

instantaneous power pq theory technique [26]. 

c. DC-link capacitor voltage regulation algorithm: this algorithm's primary purpose is to determine how 

much dc-link charging current idc the SAPF will require to continuously maintain a specific level of dc-

link voltage volt direct current (Vdc).  

d. Current control algorithm: this algorithm's primary job is to pulse-width modulate ire f from the 

harmonic extraction algorithm and idc from the dc-link capacitor voltage regulation algorithm into gate 

switching pulses S such that the feedback signal 𝑖𝑖𝑛𝑗  or 𝑖𝑆 can follow ire f via a current control loop. 

Hysteresis control [27], sinusoidal pulse-width modulation (SPWM) [28], and space vector PWM 

(SVPWM) [29] are a few examples of regularly used algorithms for this methodology. 

The actual output (which might be either 𝑖𝑖𝑛𝑗  or 𝑖𝑆) is observed and supplied back to be compared 

with the desired one until the monitored output achieves its required response. The four control algorithms 

are connected to one another in a systematic way. The algorithms have been demonstrated in practise to be 

capable of responding swiftly to disturbances like dynamic situations in order to restore the monitored output 

to the desired shape once more. 

 

 

2. SYNCHRONIZATION TECHNIQUES  

At operational frequencies, synchronization is the process of minimizing phase deviations between 

the SAPF voltage and grid voltage. This voltage should be tracked, frequency fluctuations should be 

detected, higher order harmonics should be filtered out, and grid voltage variations should be responded to 

the variations. The different types of synchronization techniques are shown in Figure 2. 
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Figure 2. Synchronization techniques classifications 
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2.1.  Zero correlation duration approach  

For the phase synchronization, zero correlation duration (ZCD) is playing a very important role for 

the solving of phase detection [30], [31]. The function of ZCD technique is generating the switching pulses 

by detecting the zero-crossing point of AC voltage signal. It provides the highest benefits in terms of 

implementation requirements, but it fails to work in practise, particularly while the source voltage is 

disturbed or subjected to harmonics. In such cases, multiple zero crossings may occur, making it more 

difficult for the zero-crossing detector to detect the original zero crossing and perhaps causing to false 

detection. A ZCD hardware circuit is designed to give an initiating pulse to the SAPF controller when a zero-

crossing voltage is detected at the PCC, for example, in [32]. The initial pulse acts as a toggle, allowing the 

controller to initiate the operation. This approach can be used with single-phase or three-phase systems [33]. 

Nonetheless, due to its shortcomings, this approach is still the least recommended for SAPF application 

implementation when compared to the other accessible ways. 

 

2.2.  Phase locked loop technique  

The phase locked loop (PLL) approach is extensively used solution because of its simple control 

structure and efficiency in coping with a variety of grid conditions. PLL techniques is effective implemented 

in a wide range of applications namely, control systems, communications, and instrumentation. Figure 3 

gives the control structure of PLL, and it comprise the various blocks such as voltage-controlled oscillator 

(VCO), loop filter and phase detector. Initially, the phase detector [34] detects the phase error signal ∆θ by 

comparing the reference phase signal 𝜃𝑟𝑒𝑓 with the feedback signal θ. The generated error signal ∆θ is passed 

through the loop filter to supress the high frequency noise signals. The filtered signal is now processed 

towards the VCO to obtain the modified phase angle θ which is acting as feedback to the phase detector. As 

continuous loop process, the value of error is reduced and reaches to the zero value, which produces the 

desired reference signal 𝜃𝑟𝑒𝑓. 
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Figure 3. Control structure of PLL 

 

 

The SRF-PLL [35] structure is most preferred synchronisation technique for the applications of 

three phase SAPF. The control structure of SRF-PLL technique is given in Figure 4. Initially, the three-phase 

voltage 𝑉𝑆𝑎𝑏𝑐 is converted into two phase αβ stationary frame using clarke’s transformation as given in (4). 
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Figure 4. Structure of SRF-PLL 
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The αβ stationary frame [36] is now converted into dq rotating reference frame using park’s 

transformation as given in (5). 

 

[
𝑣𝑑(𝑘)
𝑣𝑞(𝑘)

] =  [
𝐶𝑜𝑠𝜃 𝑆𝑖𝑛𝜃
−𝑆𝑖𝑛𝜃 𝐶𝑜𝑠𝜃

] [
𝑣𝛼(𝑘)

𝑣𝛽(𝑘)
] (5) 

 

The resultant q variable is then controlled by a proportional-integral (PI), and the utility's angular 

frequency is produced as the output. By integrating the angular frequency and then feeding it back into the dq 

transformation until the phase angle is set at a constant value, the utility phase angle can be obtained. In case 

of abnormal conditions such as unbalanced voltages and distortions in voltage sources due to harmonics, the 

SRF-PLL technique fails to track the utility's angular frequency quickly and allows for precise phase angle 

measurement. When the source voltage is devoid of distortions and imbalances, the fundamental benefit of 

the SRF-PLL technique is that it enables exact and quick monitoring of utility frequency and phase angle. 

Sadly, the SRF-PLL malfunctions when the supplied voltage is unbalanced and/or distorted as a result of 

harmonics. 

 

2.3.  Adaptive linear neuron synchronization approach  

The concept of the adaptive linear neuron (Adaline) [37] is one current synchronisation method 

(Adaline). To extract harmonics or generate reference current, the Adaline method is first introduced [38], 

[39]. Furthermore, the Adaline technique for harmonic extraction has been suggested for SAPF 

synchronisation with adequate consideration. In this context, unified Adaline strategy is used to combine both 

the Adalines function and is presented [40]. The control mechanism of the Adaline-based synchronisation 

approach is depicted in Figure 5. Initially, the measured source voltage 𝑣𝑆(𝑘) iscompared with the estimated 

fundamental voltage in the comparator to generate the error signal 𝑒(𝑘). The weight updating algorithm is 

applied to theresultant error 𝑒(𝑘) and is given as in (6). 

 

𝑊(𝑘 + 1) = 𝑊(𝑘) +
𝛼𝑒(𝑘)𝑦(𝑘)

𝑦(𝑘)𝑇𝑦(𝑘)
 (6) 
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Figure 5. Block diagram of adaline synchronization technique 

 

 

The weights W11 and W21 are used to evaluate the instantaneous fundamental magnitude is given as 

in (7). 

 

𝑉𝐹𝑢𝑛𝑑𝑚𝑎𝑔
(𝑘) =  √𝑊11

2 + 𝑊21
2  (7) 

 

The iteration is repeated continuously until the fundamental magnitude 𝑉𝐹𝑢𝑛𝑑𝑚𝑎𝑔
(𝑘) reaches 𝑣𝑆(𝑘). 

Therefore, the magnitude 𝑣𝑆(𝑘) is generating the desired synchronization signal sin(𝑘𝜔∆𝑡 + 𝜃). 
Thus, the Adaline synchronization technique is effectively works for balanced source voltage [41]. 

The Adaline approach can provide the synchronising signal with a single working phase in a single phase 

system, but it requires three comparable devices in a three phase system. One of the method's main 
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weaknesses is that it simply doesn't work if the supply voltage is imbalanced or subjected to harmonic 

disturbances.  

 

2.4.  Fundamental component extraction approach  

The fundamental component extraction (FCE) approach, which extracts the fundamental component 

of the source voltage with unity magnitude [42], [43], is another modern SAPF synchronisation technique. 

This technique's SAPF synchronisation mechanism is identical to that of Adaline. However, even when the 

supply voltage is uneven or distorted, the FCE technique outperforms the Adaline-based technique [44]. This 

FCE approach, uses the self-tuning filter (STF) [45], [46], which can efficiently filter out the distortions in 

the unbalanced signal. The control structure of the basic component extraction approach is shown in Figure 6. 
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Figure 6. FCE technique 

 

 

Initially, the source voltage 𝑉𝑠(𝑘) is applied to the Clarke-transformation to extract the process from 

abc-αβ transformation and is given as in (8). 

 

[
𝑉𝛼(𝑘)

𝑉𝛽(𝑘)
]=[

𝑉𝛼(𝑑𝑐)(𝑘) + 𝑉𝛼(𝑎𝑐)(𝑘)

𝑉𝛽(𝑑𝑐)(𝑘) + 𝑉𝛽(𝑎𝑐)(𝑘)
] (8) 

 

Where 𝑉𝛼(𝑑𝑐)(𝑘), and 𝑉𝛼(𝑎𝑐)(𝑘) are the fundamental and distorted component of 𝑉𝑠 in α domain. Similarly, 

𝑉𝛽(𝑑𝑐)(𝑘), and 𝑉𝛽(𝑎𝑐)(𝑘) are the fundamental and distorted component of 𝑉𝑠 in β domain. Then, the αβ 

domain signal is processed through the filter and converted back to the fundamental sinusoidal signal 

𝑉𝑠𝑓𝑢𝑛𝑑(𝑘) using αβ-abc transformation can be given as (9). 
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2 ]
 
 
 

[
𝑉𝛼(𝑑𝑐)(𝑘)

𝑉𝛽(𝑑𝑐)(𝑘)
] (9) 

 

The magnitude of fundamental component of sinusoidal signal 𝑉𝑠𝑓𝑢𝑛𝑑(𝑘) is computed as in (10). 

 

𝑉𝑠𝑓𝑢𝑛𝑑𝑚𝑎𝑔
(𝑘) =  √𝑉𝛼(𝑑𝑐)(𝑘)2 + 𝑉𝛽(𝑑𝑐)(𝑘)2 (10) 

 

Finally, the desired synchronization signal is obtained by the division of 𝑉𝑠𝑓𝑢𝑛𝑑(𝑘) and 

𝑉𝑠𝑓𝑢𝑛𝑑𝑚𝑎𝑔
(𝑘) to get unity magnitude is given as (11). 

 

sin(𝑘𝜔∆𝑡 + 𝜃) =  
𝑉𝑠𝑓𝑢𝑛𝑑(𝑘)

𝑉𝑠𝑓𝑢𝑛𝑑𝑚𝑎𝑔
(𝑘)

 (11) 

 

The FCE technique is most suitable for three phase systems. However, the research to implement 

this technique to single phase systems can be interesting. Among all these points, it has major drawback of 

selection of gain parameters of filter. 
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2.5.  Unit vector generation technique 

The unit vector generation technique [47] is the most effective technique for the synchronization of 

SAPF. In this, the unit vectors are generated from the 𝑉𝑠. The control scheme [48] of unit vector generation is 

shown in Figure 7. The unit vector generation technique has the working principle same as FCE technique, 

obtained abc-αβ domain using Clarke transformation [49].  
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Figure 7. Control scheme of unit vector generation technique 

 

 

From abc-αβ transformation, the signals 𝑉𝛼(𝑘), and 𝑉𝛽(𝑘) represents the sine and cosine signal 

respectively. These 𝑉𝛼(𝑘), and 𝑉𝛽(𝑘) signals are passed through the loop filter (LPF) with the cut-in 

frequency of 50 Hz, to filter out the higher harmonics present in the voltage source. Then the desired 

synchronization signals are expressed as: 

 

sin(𝑘𝜔∆𝑡) =
𝑉𝛼(𝑘)

√𝑉𝛼(𝑘)2+𝑉𝛽(𝑘)2
 (12) 

 

cos(𝑘𝜔∆𝑡) =
𝑉𝛽(𝑘)

√𝑉𝛼(𝑘)2+𝑉𝛽(𝑘)2
 (13) 

 

The unit vector generation technique is most suitable for balanced three phase system. The main advantage of 

this control technique is simple and straightforward without having complex process. 

 

 

3. CONCLUSION 

The phase synchronisation approaches for synchronising SAPF with the power grid have been fully 

studied and explained in this article. The principle of SAPF is illustrated and the control approach for 

synchronization of SAPF is presented. The ZCD technique is generating the switching pulses by detecting the 

zero-crossing point of AC voltage signal. Nonetheless, due to its shortcomings, this approach is still the least 

recommended for SAPF application. The PLL technique is the most well-known and widely used in SAPF 

applications. In PLL, the phase detector detects the phase error signal and is passed through the loop filter to 

supress the high frequency noise signals. The SRF-PLL structure is most preferred synchronisation technique 

for the applications of three phase SAPF. As a result, more improvements have been made to SRF-PLL 

allowing it to cope with unbalanced and distorted grid circumstances. Finally, the future research should pay 

greater attention to hybrid, intelligent, and optimal strategies for effective and reliable synchronisation, 

particularly under unfavourable and dynamic grid settings. 
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