
Bulletin of Electrical Engineering and Informatics 

Vol. 10, No. 6, December 2021, pp. 3361~3368 

ISSN: 2302-9285, DOI: 10.11591/eei.v10i6.3259 3361 

  

Journal homepage: http://beei.org 

Handling concept drifts and limited label problems using 

semi-supervised combine-merge Gaussian mixture model 
 

 

Ibnu Daqiqil Id1, Pardomuan Robinson Sihombing2, Supratman Zakir3  
1Department of Computer Science, Universitas Riau, Indonesia 

2BPS-Statistics Indonesia, Indonesia  
3Faculty of Education and Teaching, Institut Agama Islam Negeri (IAIN) Bukittinggi, Indonesia  

 

 

Article Info  ABSTRACT 

Article history: 

Received Aug 27, 2021 

Revised Oct 28, 2021 

Accepted Nov 1, 2021 

 

 When predicting data streams, changes in data distribution may decrease 

model accuracy over time, thereby making the model obsolete. This 

phenomenon is known as concept drift. Detecting concept drifts and then 

adapting to them are critical operations to maintain model performance. 

However, model adaptation can only be made if labeled data is available. 

Labeling data is both costly and time-consuming because it has to be done by 

humans. Only part of the data can be labeled in the data stream because the 

data size is massive and appears at high speed. To solve these problems 

simultaneously, we apply a technique to update the model by employing both 

labeled and unlabeled instances to do so. The experiment results show that our 

proposed method can adapt to the concept drift with pseudo-labels and 

maintain its accuracy even though label availability is drastically reduced 

from 95% to 5%. The proposed method also has the highest overall accuracy 

and outperforms other methods in 5 of 10 datasets. 
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1. INTRODUCTION 

Today, we live in a digital age where practically anything can be done online. Consequently, the 

volume of data generated and produced is increasing at an exponential rate. According to the recent Statista 

report [1], the data generated in 2020 is estimated to be 64.2 zettabytes (trillion gigabytes). It is predicted to 

increase by over 19.2% in 2021-2025. Usually, some of this data is generated continuously and comes in 

infinite streams, such as IoT and social media data. This data type is known as data stream. Due to these 

characteristics, the distribution in the data stream might change over time. This change is caused by many 

factors like the change of human behavior, environment, and trends. The phenomenon where the distribution 

of data changes over time is called concept drift [2]. 

Concept drift caused model performance to decrease because the model trains and evaluates with data 

with different distributions. Many adaptive methods have been developed to address this problem [3], [4]. Most 

of them work by updating or retraining the model then redeploying them periodically or when the concept drift 

is detected. The critical component of updating or retraining the model is labeled data. It is impossible to label 

all the data in streaming data because of the size and the speed of data. Nonetheless, these solutions could be 

time-consuming and expensive because data labeling may not be available without human input.  

Several methods have been proposed to solve the concept drift problem [2], [5]-[7], or label limitation 

problem [8]. However, when these two problems exist simultaneously, the retraining in a limited label situation 
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may not be effective because it cannot capture the complete concept. In addition, several methods of detecting 

concept drift are also very dependent on its model output. It automatically limits the ability of the algorithm to 

detect concept drift because of the label limitation problem. Therefore, apart from adapting to concept drift, the 

ability to adapt to limited label conditions is an essential feature of the model to solve simultaneously. 

In our previous work in [9]-[11], we proposed combine merge Gaussian mixture model (CMGMM) as 

an incremental algorithm to handle the concept drift problem based on the Gaussian mixture model (GMM). 

This algorithm can adapt concept drift by including a new component, updating, and removing it to 

accommodate the emerging concept drift. The main benefits of this algorithm are the ability to adapts and 

constantly learns from stream data using a local restoration technique to maintain previously learned 

information and avoid catastrophic forgetting. However, this solution only works when the data are fully 

labeled. 

This paper proposes semi-supervised CMGMM (SCMGMM) to address the concept drift problem 

and limited label simultaneously. SCMGMM extends the CMGMM that allows us to adapt to new data that is 

partially labeled. The training and classification process are the same as the CMGMM, but the adaptation 

process is different. In SCMGMM, the model assigns a pseudo-label to fill the missing label before the 

adaptation process. This study aims to develop an incremental model and avoid performance degradation due 

to noisy pseudo-labels. This paper has been divided into the following parts: section 2 is the related work of 

this research; section 3 explains our proposed method; section 4 describes the experimental setup; section 5 

discusses the experimental results; and finally, section 6 provides our conclusion. 

 

 

2. RELATED WORK 

2.1.  Concept drift 

In this paper, the term concept drift indicates arbitrary statistical change property of a target domain [7], 

[12]. Statistically, we define a concept as prior class probabilities 𝑝(𝑦) and class conditional probabilities 𝑝(𝑋|𝑦) 

[13] where 𝑋 is the input features and 𝑦 is the corresponding label 𝑦 in dataset 𝔇. 𝑝(𝑦) and 𝑝(𝑋|𝑦) determine the 

joint distribution 𝑝(𝑋, 𝑦). In the future, the relationship of 𝑝(𝑦), 𝑝(𝑋|𝑦), and 𝑝(𝑋, 𝑦) might change because the 

change of human or user behaviour and environtment. This situation is expressed as being as: 
 

∃𝑋: 𝑝𝑤0
(𝑋, 𝑦)  ≠ 𝑝𝑤𝑛

(𝑋, 𝑦) (1) 
 

In (1) shows a difference in the distribution between the joint probabilities at the two-time window 

𝑤0 and 𝑤𝑛. As a result, the model built based on 𝑤0 is not suitable for use on 𝑤𝑛 because the relationship 

between 𝑋 and 𝑦 might change, then increasing error and decreasing accuracy on 𝑤𝑛 [14]. 

 

2.2.  Combine-merge Gaussian mixture model 

Combine-merge Gaussian mixture model (CMGMM) [9] is an incremental learning algorithm 

designed to solve the concept drift problem. CMGMM can include new components from newly coming 

data, update and delete existing components as a response to the change in the current data 𝑤𝑛. This 

algortihm consist of four main process, namely training best model, data prediction, detect concept drift and 

model adaptation. In the training process, we employ the expectation maximization (EM) [15] algorithm to 

train the model and the Bayesian information criterion (BIC) [16] to select the best model. To classify the 

data, we compute the log-likelihood for each class. Model adaptation intends to adapt the current model in 

response to newly received data, including new concepts or concept modifications. The result of this 

adaptation is an adapted weighted mixture component that respects the original mixture. Please refer to [9] 

for a detailed process and implementation of CMGMM. 

 

 

3. PROPOSED METHOD 

In this paper, we propose semi-supervised CMGMM (SCMGMM) as an extension of the combine-

merge Gaussian mixture model (CMGMM) [9] to classify data in concept drifts and limited label situations. 

Therefore, SCMGMM and CMGMM have many similarities except in the incremental phase. The illustration 

of the process on the SCMGMM can be seen in Figure 1. 

First, we build an optimal model Μ𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛 from a fully labeled dataset using the EM [15] algorithm 

and select the best model using BIC [16]. Not all the data is labeled in the incremental process, so we employ 

label propagation to generate pseudo labels from unlabeled data. In the incremental process, when Kernel 

density drift detector (KD3) [7] detects the concept drift, the model triggers the concept drift adaptation 

process. The adaptation process employs both labeled and pseudo labels data. The detailed difference 

processes between SCMGMM and CMGMM are explained in the subsections that follow. 
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Figure 1. SCMGMM process pipeline 

 

 

3.1.  Pseudo label propagation 

The pseudo label propagation process uses labeled data to predict labels for unlabeled data with a 

prior consistency assumption. The result of the prediction to label the unlabeled data is called a pseudo label. 

The model used to predict pseudo labels is trained based on current window data 𝐷𝑡  using the label spreading 

method [17], assuming that nearby data instances and the similar structure share the same label. Finally, 

using the labeled and pseudo label data, we evaluate and adapt the concept drift.  

In training, we build a Laplacian matrix of a directed graph utilizing the RBF Kernel from 𝐷𝑡 . The 

edge of the graph is calculated using the RBF kernel in (2). Then we construct the Laplacian matrix S using 

𝑆 = 𝐷−1/2𝐸𝐷−1/2 where D is a diagonal matrix where the diagonal elements are the sum of the i-row of the 

E. Finally, we compute F as a class probability distribution to train the data, then apply the regularization 

function to smooth the label. F is 𝑛 × 𝐶 non-negative matrices that contain the classification result of 𝐷𝑡 . A 

detailed equalization of the probability and regularization function can be seen in [17] at (1) and (4).  

 

𝐸𝑖𝑗 = {
𝑒𝑥𝑝 (−

‖𝑋𝑖−𝑋𝑗‖
2

2𝜃2 ) , 𝑖 ≠ 𝑗

0, 𝑖 = 𝑗

 (2) 

 

3.2.  SCMGMM drift adaptation 

SCMGMM drift adaptation is carried out to combine all existing components and then optimize by 

reducing the similar components. The main component of this method is a 𝑛-Gaussian mixture component denoted 

by {(𝑤1, 𝜇1, 𝑃1), (𝑤2, 𝜇2, 𝑃2), … (𝑤𝑛 , 𝜇𝑛, 𝑃𝑛)} where 𝑤, 𝜇, 𝑃 are the prior probability or weight, the means, and the 

covariance. This weight must satisfy 𝑤1 + 𝑤2 + ⋯ + 𝑤𝑛 = 1, and has probability density function in (3). 

 

𝑓(𝑋) = ∑ 𝑤𝑖𝑁(𝑥;𝑛
𝑖=1 𝜇𝑖, 𝑃𝑖) (3) 

 

In this study, the adaptation process is carried out by adding new components, reducing similar 

components, and remove components. The adaptation process begins by building a local model Μ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

from the recent incoming data that represent the new concepts or concept updates in the data. Then, we 

combine the Μ𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛 and Μ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 components to Μ𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 . This process aimed to append any new 

concepts from Μ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 that may not exist in the Μ𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛 at the initial training. 

When a new component in Μ𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑  is not similar to any other components, the process of 

addition is carried out. But if there are two or more similar components in Μ𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 , then the merge process 

is carried out. The merge process produces a new Gaussian component (𝑤𝑖𝑗 , 𝜇𝑖𝑗 , 𝑃𝑖𝑗) from two Gaussian 

component {(𝑤𝑖 , 𝜇𝑖, 𝑃𝑖), (𝑤𝑗 , 𝜇𝑗 , 𝑃𝑗)} where 𝑤𝑖 + 𝑤𝑗  ≤ 1. (𝑤𝑖𝑗 , 𝜇𝑖𝑗 , 𝑃𝑖𝑗) preserve the zeroth-,-first- and 

second-order moments of its original gaussian. The moment-preserving merge process is showed in (4)-(6). 

 

𝑤𝑖𝑗 = 𝑤𝑖 + 𝑤𝑗 (4) 

 

𝜇𝑖𝑗  =
𝑥𝑤𝑖

𝑤𝑖 + 𝑤𝑗
 𝜇𝑖 +

𝑥𝑤𝑗

𝑤𝑖 + 𝑤𝑗
 𝜇𝑗 (5) 

 

𝑃𝑖𝑗 =
𝑤𝑖

𝑤𝑖+𝑤𝑗
 𝑃𝑖 +

𝑤𝑗

𝑤𝑖+𝑤𝑗
 𝑃𝑗 +

𝑤𝑖𝑤𝑗 

(𝑤𝑖+𝑤𝑗)
2 (𝜇𝑖 − 𝜇𝑗)(𝜇𝑖 − 𝜇𝑗)

𝑇
 (6) 
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To measure the similarity, we calculate the Kullback Leiber dissimilarity of two Gaussian 

component 𝑓(𝑥) and 𝑔(𝑥) in (7). 
 

𝑑𝐾𝐿({(𝑤1, 𝜇1, 𝑃1)}, {(𝑤2, 𝜇2, 𝑃2)}) =
1

2
[𝑡𝑟( 𝑃2

−1[𝑃1 − 𝑃2 + (𝜇1 − 𝜇2)(𝜇1 − 𝜇2)𝑇]) + 𝑙𝑜𝑔
det (𝑃2)

det (𝑃1)
] (7) 

 

The detailed algorithm for model adaptation is shown in algorithm 1 
Algorithm 1: Model adaptation 

Input: Pre-train SCMGMM 𝑀pretrain, Labeled data 𝒰, Unlabeled data 𝐿 

Result: Adapted Model  

Adaptation_data = 𝒰 + labelPropagation(L) 

𝑀current  = findBestGMM (Adaptation_data) 

𝑀combine = CombineGMMComponent (𝑀current, 𝑀pretrain) 

distanceMatrix= KL-Dissimalarity(𝑀combine) 

for targetComponent to nComp  

 𝑀merge = mergeComponent (target, distanceMatrix)  

  BICcandidate = ComputeBIC (𝑀merge, ds) 

  if BICcandidate < BICbest then 

  Mbest = Mmerge 

  end 

end 

𝑀best=ComponentPrune (𝑀best) 

return Mbest 

 

 

4. EXPERIMENT SETUP 

This section describes the datasets, comparison methods, evaluation metrics, and hyperparameters 

used in this study to train and evaluate the proposed method. 

 

4.1.  Datasets  

We used real-world and synthetic datasets to evaluate the proposed algorithm. These datasets 

contain concept drift with a certain level of label availability in the dataset, namely 90%, 75%, 50%, 25%, 

5%, and 1%. The datasets used in experiments are given as shown in: 

− Rotating hyperplane dataset [18] is an artificial dataset containing hyperplane data in d-dimensional 

space that continuously changes its position and orientation. 

− SEA dataset [19] is an artificial dataset that consists of three attributes and 50,000 data instances. This 

dataset also contains abrupt concept drift simulated by four different concepts every 12,500 data points 

by changing the class decision boundary.  

− CR4 [20] is an artificial dataset containing 144,400 samples using four classes rotating separately in 2-

dimensional space.  

− FG2C2D [20] is an artificial dataset that contains two bidimensional classes and two concept drift, 

namely gradual and incremental concept drift, every 200 data points. There are 200,000 samples and 

two classes in this dataset. 

− GEAR2C2D [20] is artificial dataset that contain two rotating gears represented as two classes. There 

are 200,000 samples and two classes in this dataset. 

− MG2C2D [21] is artificial dataset that contains two bidimensional multimodal Gaussian classes.  

− NOAA is real-world weather dataset collected over 50-years at Bellevue, Nebraska. This dataset has 

18,159 samples in two classes, namely rain, and no-rain.  

− Electricity is one of the famous real-world dataset used to evaluate concept drift problems. This dataset 

collected by [22] contains electricity market records in New South Wales, Australia.  

− Spam dataset is collected by [23] to separate malicious spam emails from legitimate ones. 

− Phishing is collected by [24] containing data about malicious web pages. 

 

4.2.  Comparison methods 

In our evaluation, we compare our proposed algorithm SCMGMM with three state-of-the-art 

algorithms from the related literature, namely: 

− Self adjusting memory KNN (SAM-kNN) [25] is an incremental learning algorithm based on k-nearest 

neighbor (kNN). This algorithm is designed to able to deal with varied types of concept drift within 

streaming data.  

− Learn++.NSE ensemble classifier [12] is an incremental ensemble classifier to solve a nonstationary 

environment (NSE). This algorithm uses weighting strategy and base classifiers association mechanism 

to track concept drift. 
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− Hoeffding tree [26] is an incremental decision tree learning algorithm for streaming data. It keeps track 

of the most recent streaming instances in a graph. To replace an old instance with a new one, a star-

mesh transform technique is used. 

These algorithms are designed to solve only the concept drift problem. Therefore, we apply the 

pseudo label propagation method to these algorithms to solve the limited label problem. The source code of 

the proposed and comparison method implementation and the dataset is available in our public repository1. 

 

4.3.  Evaluation method and metric 

We evaluate the proposed method performance using the interleaved test-then-train or prequential 

evaluation method. All the classifiers are trained using the same fully labeled training dataset. In the 

evaluation, newly incoming data is evaluated in specific windows. At this stage, the label of the data is 

removed according to the label availability setting. Furthermore, we perform pseudo labeling and test the 

incoming data stream, then updates or retrain the model if concept drifts are detected. The model is 

constantly tested on the data stream that has not been seen when evaluated in this order. The benefit of this 

approach does not require a holdout set for testing and allowing us to utilize the existing data efficiently.  

 

 

5. RESULTS AND DISCUSSION  

Table 1 presents the experimental results of SCMGMM, SAM-kNN, Learn++NSE ensemble 

classifier, and hoeffding tree in 10 datasets. SCMGMM shows better accuracy than other methods, especially 

in CR4, GEARS2C2D MG2C2D, and NOAA. In all models and datasets, the model's accuracy is in line with 

the accuracy of the label propagation. When the label propagation accuracy is low, then the model accuracy 

is also low and vice versa. For example, in SEA 90%, SCMGMM accuracy is 0.8258, and label propagation 

accuracy is 0.7534. 

In the artificial dataset, CR4, FG2C2D, GEARS2C2D, MG2C2D, where the data is generated using a 

Gaussian distribution, the use of graph-based and SCMGMM gave better results. However, SCMGMM shows its 

worst performance in the hyperplane dataset. This dataset contains a set of data point that were created by the 

hyperplane 𝑤𝑖𝑥𝑖 = 𝑤0 rotate with random direction so that the graph-based pseudo labeling method cannot work 

well.  

Other algorithms like the Hoeffding Tree and SAM-KNN also show good accuracy. The Hoeffding 

tree shows its best accuracy in Hyperplane, SEA, and Electrical. SAM-KNN shows its best accuracy only in 

Phishing. However, the accuracy of Learn++NSE is very low on several datasets such as CR4, MG2C2D, 

FG2C2D, and GEARS2C2D, where this method was accurate less than 10% of the time. This algorithm is 

not suitable for the syntectic dataset generated by the Gaussian distribution. 

Misclassification on the pseudo label can be said to be noise at the adaptation stage. This noise 

could decrease the model accuracy. The lower the label availability, the higher the noise on the pseudo label. 

In Figure 2, all classifiers that use the label propagation method can maintain their performance until label 

availability is 5%. Decreasing label availability from 90% to 5% only reduced label propagation performance 

by 5.2% (on average). The accuracy of label propagation reflected the model performance; the higher the 

label propagation accuracy, the better the model performance. However, in label availability 1%, there are 

significant performance decrements, especially in SEA, FG2C2D, and Phishing.  

The statistical analysis of experimental results was conducted for four algorithms with 60 paired 

samples. The significant test level is alpha=0.050. For the populations SCMGMM (p=0.001), hoeffding tree 

(p=0.000), SAM-kNN (p=0.003), and learn++NSE (p=0.001), we rejected the null hypothesis that the 

population is normal. Thus, we assumed that not all populations are normal. 

Furthermore, we utilize the non-parametric Friedman test as an omnibus test to check whether there 

are any significant differences between the median values of the populations because we have more than two 

populations, and some of them are not normally distributed. We also use the post-hoc Nemenyi test to infer 

which differences are significant. In this test, we report the median (MD), the median absolute deviation 

(MAD), and the mean rank (MR) among all populations over the samples. Differences between populations 

are significant if the mean rank difference is greater than the critical distance CD=0.606 of the Nemenyi test. 

Figure 3 shows the result of the Post-hoc Nemenyi test. 

We reject the null hypothesis (p=0) of the Friedman test that there is no difference in the central 

tendency of the populations SCMGMM (MD=0.804±0.122, MAD=0.193, MR=1.950), Hoeffding Tree 

(MD=0.829±0.097, MAD=0.156, MR=1.958), SAM-KNN (MD=0.821±0.125, MAD=0.195, MR=2.508), 

and Learn++NSE (MD=0.557±0.346, MAD=0.411, MR=3.583). Therefore, we assume that there is a 

statistically significant difference between the median values of the populations. 
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Table 1. Comparison of model accuracy at certain label availability levels 

Dataset Label Availability Label Propagation Accuracy 
Model Accuracy 

SAM-KNN Learn++ NSE Hoeffding Tree SCMGMM* 

Hyperplane 90% 0.5823 0.5903 0.5627 0.6551 0.6149 
75% 0.5803 0.5899 0.5568 0.6472 0.6122 

50% 0.5701 0.5830 0.5575 0.6352 0.6021 

25% 0.5665 0.5662 0.5442 0.6110 0.5809 
5% 0.5448 0.5279 0.5254 0.5682 0.5367 

1% 0.5273 0.5316 0.5205 0.5259 0.522 

SEA 90% 0.7534 0.8215 0.7507 0.8258 0.8018 
75% 0.7584 0.8118 0.7496 0.8331 0.8069 

50% 0.7519 0.7915 0.7299 0.8216 0.7964 

25% 0.7423 0.7536 0.7073 0.7995 0.7672 
5% 0.7067 0.7039 0.6856 0.7641 0.708 

1% 0.6356 0.5823 0.5777 0.6362 0.5992 

CR4 90% 0.9999 0.9993 0.0007 0.8154 0.9998 
75% 0.9999 0.9992 0.0006 0.8428 0.9998 

50% 0.9998 0.9989 0.0006 0.8433 0.9998 

25% 0.9998 0.9983 0.0007 0.8367 0.9997 
5% 0.9992 0.9981 0.0009 0.8642 0.9991 

1% 0.8485 0.9530 0.0040 0.9580 0.9580 

FG2C2D 90% 0.9546 0.9620 0.0216 0.9591 0.9615 
75% 0.9531 0.9625 0.0214 0.9591 0.9631 

50% 0.9528 0.9603 0.0204 0.9617 0.9626 
25% 0.9496 0.9555 0.0244 0.9588 0.9590 

5% 0.9408 0.9371 0.0351 0.9467 0.9438 

1% 0.8234 0.7684 0.0518 0.8214 0.7827 
GEARS2C2D 90% 0.9905 0.9919 0.0076 0.9617 0.9965 

75% 0.9907 0.9904 0.0092 0.9628 0.9950 

50% 0.9903 0.9879 0.0099 0.9654 0.9931 
25% 0.9890 0.9876 0.0098 0.9672 0.9903 

5% 0.9649 0.9526 0.0233 0.9562 0.9645 

1% 0.8774 0.8339 0.0715 0.8841 0.8678 
MG2C2D 90% 0.9216 0.9264 0.0470 0.9083 0.9333 

75% 0.9174 0.9296 0.0409 0.9147 0.9358 

50% 0.9139 0.9275 0.0386 0.9155 0.9357 

25% 0.9053 0.9170 0.0442 0.9115 0.9296 

5% 0.8912 0.8863 0.0583 0.8877 0.9058 

1% 0.8164 0.7606 0.0765 0.8123 0.8095 
ELEC 90% 0.6927 0.6549 0.7132 0.7472 0.7364 

75% 0.6720 0.6693 0.6913 0.7342 0.7140 

50% 0.6632 0.6737 0.6844 0.7131 0.6950 
25% 0.6483 0.6554 0.6482 0.6751 0.6554 

5% 0.5782 0.5124 0.5487 0.5543 0.5223 

1% 0.5362 0.5152 0.5378 0.5358 0.5123 
NOAA 90% 0.7032 0.7335 0.6845 0.7338 0.7420 

75% 0.6933 0.7306 0.7068 0.7210 0.7398 

50% 0.6943 0.7285 0.7485 0.7138 0.7283 
25% 0.6955 0.7282 0.7365 0. 7009 0.7293 

5% 0.6895 0.7066 0.7029 0.7143 0.7178 

1% 0.6883 0.6515 0.6735 0.6780 0.6818 
Spam 90% 0.8503 0.8210 0.8279 0.8715 0.9163 

75% 0.8293 0.8318 0.8122 0.8680 0.8638 

50% 0.8142 0.8609 0.8436 0.8713 0.7873 

25% 0.7703 0.8837 0.8513 0.8517 0.7664 

5% 0.7543 0.7017 0.7938 0.7165 0.6785 

1% 0.6941 0.6306 0.6109 0.6921 0.6147 
Phising 90% 0.9227 0.9065 0.8912 0.9013 0.8965 

75% 0.9162 0.9060 0.8842 0.8992 0.8918 

50% 0.9091 0.8998 0.8588 0.8921 0.8722 
25% 0.8973 0.8833 0.8415 0.8667 0.8439 

5% 0.8386 0.7841 0.7765 0.7275 0.7651 

1% 0.6860 0.5756 0.6233 0.6630 0.6045 
Average 90% 0.8371 0.8407 0.4507 0.8379 0.8599 

75% 0.8310 0.8421 0.4473 0.8382 0.8522 

50% 0.8259 0.8412 0.4492 0.8333 0.8372 
25% 0.8163 0.8328 0.4408 0.8309 0.8221 

5% 0.7908 0.7710 0.4150 0.7699 0.7741 

1% 0.7133 0.6802 0.3747 0.7206 0.6952 

*Proposed algorithm 
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Figure 2. Comparison of model accuracy and noise in the pseudo label 

 

 

 
 

Figure 3. Post-hoc Nemenyi test result 

 

 

6. CONCLUSION  

This paper proposes an incremental algorithm that solves the concept drifts and label scarcity 

situations. The experiment result shows that our proposed algorithm outperforms 5 of 10 datasets and has the 

highest overall accuracy. The accuracy of the label propagation dramatically affects the accuracy of the 

model; the higher the accuracy, the higher the accuracy of the model. Our contributions are our proposed 

method to maintain model performance using pseudo label propagation even though label availability is 

drastically reduced from 95% to 5%, and the label propagation also can be applied to other incremental 

methods. As part of our future work, we plan to investigate the effectiveness of adapted data supplied by 

concept drift detectors in several types of concept drift. Furthermore, we plan to investigate this algorithm 

with complex feature datasets like images, sounds, and videos. 
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