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 Microscopic images are becoming important and need to be studied to know 

the details and how-to quantitatively evaluate decellularization. Most of the 

existing research focuses on deep learning-based techniques that lack 

simplification for decellularization. A new computational method for the 

segmentation microscopy images based on the shearlet neural network 

(SNN) has been introduced. The proposal is to link the concept of shearlets 

transform and neural networks into a single unit. The method contains a feed-

forward neural network and uses a single hidden layer. The activation 

functions are depending on the standard shearlet transform. The proposed 

SNN is a powerful technology for segmenting an electron microscopic image 

that is trained without relying on the pre-information of the data. The shearlet 

neural networks capture the features of full accuracy and contextual 

information, respectively. The expected value for specific inputs is estimated 

by learning the functional configuration of a network for the sequence of 

observed value. Experimental results on the segmentation of two-

dimensional microscopy images are promising and confirm the benefits of 

the proposed approach. Lastly, we investigate on a challenging datasets ISBI 

2012 that our method (SNN) achieves superior outcomes when compared to 

classical and deep learning-based methods.  
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1. INTRODUCTION 

Electron microscopy (EM) has appeared as an effective technique to address fundamental 

knowledge in molecular and cellular biology [1]. Image segmentation algorithms goal is partition pixels into 

close boundaries corresponding to different essential objects. The major challenge in the visual analysis of 

microscopy images is the formality of mitochondrial morphologies and nanostructures. The microscopy 

image segmentation is an important research area that employs different feature detection and representation 

techniques. Examination and segmentation of electron microscopy images are usually carried out by 

specialists hand-crafted with knowledge in identifying and clarifying biological structures in the complex 

grayscale world of electrons. However, efforts to automate the segmentation method were based on 

supervised machine learning procedures that involve an efficient multiresolution approach and large datasets 

for training. Improvement has been made in this area, and in progress, but these methods remain limited to 

defined ideal structures for synapses segmentation of microscopy images [1-4].  

https://creativecommons.org/licenses/by-sa/4.0/
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A shearlet transform is an effective approach to multiscale systems that can capture anisotropic with 

high efficiency compared to wavelet limitation [5, 6]. The multiscale decomposition shearlet transformation 

captures the visual information offered by the edges detected in different directions and with multiple scales. 

The capability of the shearlet transform's inherent directional sensitivity makes it appropriate for 

characterizing small contours of carcinoma cells. We recall that some recent work using multiscale 

decomposition for microscopic image analysis has recently appeared in [7-9]. Li et al. [8] proposed the 

shearlet transform and deep neural networks for the No-reference image quality assessment. Masci et al. [10] 

has shown the potential for reducing total computational time when training a traditional deep neural network 

for image segmentation by processing each training image in a single pass rather than patch by patch. Yang 

et al. [11] used microscopic fecal specimens with digital image processing and an artificial neural network 

for automatic identification of human helminth eggs. Ho et al. [12] proposed images using three-dimensional 

convolutional neural networks. David Joon et al. [13] used segmentation of vasculature from fluorescently 

labelled endothelial cells in multi-photon microscopy images, particularly in the study of tumors. Most of the 

methods mentioned above used different hand-crafted features to analyze microscopic images. Besides, these 

hand-crafted features are intended for a defined type of problem, and they are not merely appropriate on other 

datasets. Furthermore, the scale and the resolution of the acquired microscopic images have to be accounted 

for to improve accuracy. Fakhry et al. [14] proposed an algorithm for segmenting the EM image by locating 

dense predictions that combined multidimensional contextual along with full-precision reconstruction. This 

approach is relying on post-processing techniques that limited the automated visualization of the 

segmentation. Shen et al. [15] proposed a boundary detection for neuronal by using multistage recursive 

input in traditional networks. The performance can be enhanced by implementing stage by stage, which 

limits the memory of the GPU. Chen et al. [16] proposed a deeply supervised contextual neural network for 

neuronal structure segmentation. Gonda et al. [17] proposed a pixel classifier for the segmentation of EM 

images by train a deep neural network. This method employs a deep neural network training-feedback loop 

that captures sparse annotations based on recent and previous annotations. S. Ishii et al. [18] discussed 

feature reconstruction applications to microscopic images based on multi-frame super-resolution, data-driven 

image restoration, and deep learning methods that allow training of nonlinear filters for image segmentation. 

Raju R., T. Maul, et al. [19] suggested using the local contrast slot filling algorithm for a non-learnable, 

simple, and easy-to-learn algorithm for membrane detection of neuronal slides. Jones C. et al. [20] developed 

a hierarchical structure for super-pixel incorporation for semi-automatic segmentation in electron microscopy 

images. 

In general, the combined challenges determine the segmentation strategy, and applicable methods 

have required the development of advanced techniques. In this paper, a robust segmentation of microscopy 

images based on the shearlet neural network is developed. The proposed method demonstrated that using 

shearlet coefficients features with the neural network as additional information, the accuracy of segmentation 

improved compared to the methods that rely on hand-crafted features. 

 

 

2. PROPOSED SHEARLET NEURAL NETWORK 

Shearlets were announced in 2006 are a multiscale framework for encoding anisotropic features [5, 6]. 

The shearlet method is designed from the concept of shearlets through composite dilatation. Moreover, the 

process that provides a general technique for specific waveforms is in various scales and locations, such as 

conventional wavelets, and in different directions and with different scaling factors in each coordinate [5]. 

The shearlets are mainly useful in an amount of image, as shown in several publications (e.g., [8, 21-23]). It 

is significant for processing applications, such as denoising and feature extraction. 

The internal structure of the shearlet neural network is very equivalent to the original neural 

network. The shearlet neural network consists of the forward-feeding, which contains one or more inputs, one 

or more hidden layers contains, and the output layer that produces specific outputs for the program, see 

Figure 1. The hidden layer contains neurons and has specific shearlet activation functions. The structure of a 

shearlet network shows one output, one input in Figure 2. The hidden layer contains M shearlet activities. 

The scalar neuron output is a summer of the weighted sum of the shearlet activity outputs.  

 

𝑦(𝑥) =  ∑𝑤𝑖

𝑀

𝑖=1

𝑆𝐻𝑎𝑖𝑠𝑖𝑘𝑖(𝑥) + 𝑦 ̅ (1) 

 

𝑆𝐻𝜓𝑎𝑖𝑠𝑖𝑡𝑖 = 〈𝑓, 𝜓𝑎,𝑠,𝑘〉,   a > 0, 𝑠 ∈  ℝ, t ∈  ℝ2 (2) 
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where 𝜓𝑎,𝑠,𝑘(𝑥) = |det𝑀𝑎𝑠|
−
1

2  𝜓(𝑀𝑎𝑠
−1(𝑥 − 𝑡)), 𝑎𝑛𝑑 . 𝑀𝑎𝑠 = [

𝑎 𝑠
0 √𝑎

]. The continuous shearlet transform is 

sampling as 𝑆𝐻𝜓 𝑎𝑖𝑠𝑖𝑡𝑖 . The discrete transform is obtained from an appropriate discrete set [5]. Exactly, 

𝑀𝑎𝑠 is “discretized” as 𝑀𝑖𝑗 = 𝐵𝑖𝐴
𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝐵 = (

1 1
0 1

),   shear matrix and 𝐴 = (
4 0
0 2

) anisotropic dilation 

matrix. 

 

 

 
 

Figure 1. Structure of a shearlet neural network 

 

 

 
 

Figure 2. The architecture of the output shearlet network 

 

 

The general machinery mentioned above constructs a parseval frame of shearlets for L2(ℝ2). Thus, 

the scaling parameter we use the dyadic sampling aj=2j, j  ℤ. To collect the frequency plane “uniformly", 

the required a certain number of directions as j is getting smaller, and, therefore, the set the shear parameter 

to be sjk = 𝑘√𝑎𝑗 =  𝑘2
𝑗

2 , k  ℤ. Lastly, the location parameter is calculated by adjusting the canonical grid ℤ 

to the particular scaling and shear parameter; select tjkm=Ssjk Aajm, m  ℤ2. Combining all 

where  𝑇
{𝑆
𝑘2𝑗/2

𝐴2
𝑗
𝑚}
𝐷𝑆𝑘𝐴𝑘2𝑗

= 𝐷
𝐴2
𝑗
𝑆𝑘
𝑇𝑚 thus, we obtain a discrete system: 

 

 

{𝜓𝑗𝑘𝑚  =  𝐷𝐴2
𝑗
𝑆𝑘
 𝑇𝑚𝜓: 𝑗, 𝑘  ℤ;  𝑚  ℤ

2} (3) 

 

Thus, the functions of the model are the discrete shearlets [5]: 

 

𝜓𝑎,𝑠,𝑘(𝑥) = 2
3𝑗

2  𝜓(𝐵𝑖𝐴
𝑗 𝑥 − 𝑡) 𝑗 ≥ 0,−2𝑗 ≤ 𝑙 ≤ 2𝑗   − 1, 𝑡 ∈ ℤ2 (4) 
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The accumulation of the 𝑦 ̅ the parameter is to deal with functions that mean is nonzero. The reproducing 

formula can be approximated to an arbitrary level of detail by sufficiently large L such that: 

 

𝑓(𝑥) ≈  ∑〈𝑓, 𝜓〉𝜓𝑎,𝑠,𝑘(𝑥)

𝑘

 (5) 

 

The shearlet neural network output is one or more linear groups of these multidimensional shearlets. 

The frequency-domain of shearlets 𝜓𝑎,𝑠,𝑡 for variable values of a and s is shown in Figure 3. This shearlet 

activity is effectively equivalent to a multidimensional shearlet. The hidden layer contains sufficiently 

entirely of M shearlet activities to cover the domain of the function that is processing and analyzing. The 

scalar neuron output of the shearlet neural network is expressed in the following manner: 

 

𝑦𝑗 = ∑ 𝑤𝑖𝑗𝜓𝑎,𝑠,𝑡(𝑥1, . . . , 𝑥𝑁) + 𝑦̅𝑗
𝑀
𝑖=1  for 𝑗 =  1, . . . , 𝐾 (6) 

 

The parameter 𝑦̅𝑗 is not needed modification since the mean value of a scaling function is nonzero. 

The learning algorithm for adjusting the network parameters is function approximation (Zhang and 

Benveniste proposed an algorithm for this problem application) [24, 25]. 

 

 

  
  

Figure 3. The frequency-domain of shearlets 𝜓𝑎,𝑠,𝑘 for variable values of a and s 

 

 

Using transform shearlets, which have features including extremely effective rotation and static 

translation structures, help capture different directional edges in a complex background. The shearlet 

transform is based on a cone improved discrete shearlet with efficiently maintained shearlets [26]. The 

frequency domain is separated into two conic sections and a low-frequency portion to solve the drawback of 

broad shearlet parameters [27]. To obtain good directional selectivity of view shearlets, the horizontal and the 

vertical cone is defined by [5]. 

 

𝐶ℎ ∶= {(𝑤1;  𝑤2) ∈  ℝ
2 ∶  |𝑤1|  ≥  

1

2
; |𝑤2|  <  |𝑤1|} ;                         

𝐶𝑣 ∶= {(𝑤1;  𝑤2) ∈  ℝ
2 ∶ |𝑤2|  ≥   

1

2
; |𝑤2|  >  |𝑤1|} ;                         

𝐶× ∶= {(𝑤1;  𝑤2) ∈  ℝ
2 ∶  |𝑤1|  ≥   

1

2
 ;  |𝑤2|  ≥   

1

2
; |𝑤2|  =  |𝑤1|} ;

𝐶0 ∶= {(𝑤1;  𝑤2) ∈  ℝ
2 ∶ |𝑤1|  <  1; |𝑤2|  <  1};                                 }

 
 
 

 
 
 

 (7) 

 

It would be appropriate to simplify the notation to combine vertical and horizontal transforms (d =0, 

1) by renaming the orientation index s as in (8). 

 

SH𝜓𝑓(𝑎, 𝑠, 𝑘) = {
SH(0)𝑓[𝑎, 𝑠 − 1 − 2a, 𝑘],       1 ≤ 𝑠 ≤ 2𝑎+1

SH(1)𝑓[𝑎, 3(2𝑎) − 𝑠, 𝑘],       2𝑎+1 < 𝑠 ≤ 2𝑎+2
} (8) 

 

where a>0 is the scale, s is the orientation, and k is the location. The directional scale-space decomposition of 

image f is providing by the shearlet decomposition. Applying shearlet transform to the image f ∈ 𝐿2(ℤ2) is 

given by: 
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𝑓 →  𝑆𝐻𝜓𝑓(𝑎, 𝑠, 𝑘), (9) 

 

The whole number of shearlet decomposition created in shearlet transform is ∑ 2[
a

2
] +2 𝑡𝑛𝑎−1

𝑎=0 , where 

tna denotes the scales of the shearlet transform. The image boundary features 𝑏𝑗𝑓 at the level a are then given 

by: 

 

ba
2f[k] = (∑ SH1f[a, s, k]a )2 + (∑ SH2f[a, s, k]a )2   (10) 

 

The third layer's output is the weighted sum of the image boundary features that segment between 

the membrane and cells. Shearlet network training involves minimizing the traditional least-squares to 

estimate the cost function: 

 

𝐸 =∑(𝑦𝑖 − 𝑜𝑖)
2

𝑛

𝑖=1

 (11) 

 

where oi is the optimal output of the ith input vector, and n is the number of training samples for each group. 

Figure 4 is the SNN training algorithm's epoch, which illustrations the error is nearly 0,04 by the 12 

iterations. 

 

 

 
 

Figure 4. The epochs of the SNN training algorithm 

 

 

3. RESULTS AND DISCUSSION  

The shearlet neural network is implemented using MATLAB on a PC consists of the Intel Core i7-

8550U processor type with a 16 GB main memory and an NVIDIA 4GB GDDR5 GPU. The proposal is 

validated using the publicly available dataset provided by ISBI 2012 organizers of the ISBI 2012 electron 

microscopy image [28] with ground-truth labelled by a human expert. The data set consists of two groups of 

512x512x30, one for training and one for testing. The image dataset represents two parts of the ventral nerve 

cord of the Drosophila larva. Electronic microscopic images usually share similar materials independent of 

the direction in microstructures such as membrane, synapse, intracellular, mitochondria, glia, extracellular, 

and axons. Implementing a training stack of basic fact segmentation is provided by annotation manually. 

Practical resolution measures are the average percentage of pixels that are properly segmented for both 

foreground and background units [29]. 

The proposed segmentation method's overall efficiency performance was estimated by F-score, 

recall, precision, and accuracy. The combined quantitative analysis is performed based on the pixel similarity 

of the resulting segmented image versus the manually segmented image. The precision is represented 

repeatability of segmentation, taking into account all subjective actions required to produce the product [30-33]. 

The possible results are expressed as familiar images correctly classified (FICC), familiar images abnormal 

classified as (FIAC), strange images correctly classified (SICC), and strange images abnormal classified 

(SIAC). 

 

Accuracy =  
∑ SICC + ∑FICC

∑SICC + ∑FICC + ∑ FIAC + ∑SIAC
× 100 (12) 
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Precision =  
∑ FICC

∑FICC + ∑SICC
× 100 (13) 

  

Recall =  
∑FICC

∑FICC + ∑SIAC
× 100 (14) 

 

F − score =  (Recall ∗  Precision ∗ 2) / (Recall +  Precision) (15) 
 

Adapted Rand error = 1 − (F − score) (16) 
 

Table 1 shows the segmentation ideality-based accuracy, precision and recall, and F-score. F-score 

is an indication of perfect or unperfect segmentation, usually 1 for ideal segmentation. The adapted Rand 

error is among 0 and 1, generally 0 for ideal segmentation. The Segmentation accuracies obtained in the 

proposed algorithm are compared by the existing technique obtained by Raju et al. [19] (the local contrast 

slot filling and classical-based), Jones et al. [20] (semi-automatic segmentation and deep learning-based), all 

used the same dataset ISBI 2012 electron microscopy image [28]. We can see from Table 1, the performance 

was good in segmentation due to the dataset having an even distribution for large structures. The proposed 

method used the 30 slices in the dataset to train and test with their corresponding ground truth. F-score covers 

the general information of the segmentation image. Thus, provide a better measurement of segmentation 

performance, whereas accuracy, recall, and precision are straight depending on pixels similarity comparison. 

It can be noticed through Table 1, that for a total average of 30 images, the proposed method is proven to be 

the acceptable in segmenting the entire area in microscopic images and related regions with segmentation 

accuracy of 96.2%, F-score 0.962 and Rand error 0.038. By comparing the results, the proposed method is 

found optimum supported for segmentation performance. Figure 5, shows the proposed SNN segmentation 

result. 
 
 

Table 1. The quality of the segmented image is represented by values of accuracy, precision, and recall, and 

F-score for (average for 30 images) 
Methods Accuracy Precision Recall F-score 

Proposed 96.2% 95.11% 97.33% 0.9620 

(Classical-based) [19]  64.29% 79.74% 0.7107 

(Deep learning-based) [20] 86.9% 90.80% 83.40% 0.8694 

 
 

   
   

(a) (c) (e) 
   

   
   

(b) (d) (f) 
   

Figure 5. Image data sets used for SNN training and testing with their corresponding ground truth labels  

M: membrane+synapse, (a) (b) Microscopic test image; (c) (d) Ground-truth, (e) (f) Specify segmentation 

result 

M 

M 
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The recall and precision provide further information about the type of error involved in segmented 

images. For example, when the recall is low and the precision is high, this indicates that the image was over 

segmented. Conversely, it demonstrates that the image is under segmented, and then it should be separate. 

Therefore, we notice in the results method Jones et al. [20] that the image was under-segmented. Figure 5, It 

is evident that the proposed SNN standard segmentation acceptably detects membranes. The segmentation 

result based on the SNN is accurate compared to ground-truth. Our approach outperforms all these research 

methods; thus, the paper's proposed is applicable in the microscopy image segmentation. 

 

 

4. CONCLUSION  

In this paper, we presented a new shearlet neural network structure for image segmentation, 

specifically targeting microscopic images. A mathematical technique for segmentation an electron 

microscopic image by calculating the dense predictions gathered across multiple scales with complete and 

accurate reconstructions. Our approach has performed promisingly with the best precision. Automating this 

process can help pathologists to have a faster and more reliable diagnosis. The proposed method's main 

advantages are that it does not make any assumptions about the visual features. The shearlet transform is 

considered as a specific mathematical tool for extracting features. We believe that the proposed approach 

could work well for microscopic image segmentation tasks. The experimental results on the 2D microscopy 

image segmentation confirm the benefits of the proposed method. 
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