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 In this paper, artificial neural network is used to calibrate sensors that are 

commonly used in industry. Usually, such sensors have nonlinear input 

output characteristic that makes their calibration process rather inaccurate 

and unsatisfied. Artificial neural network is utilized in an inverse model 

learning mode to precisely calibrate such sensors. The scaled conjugate 

gradient (SCG) algorithm is used in the learning process. Three types of 

industrial sensors which are gas concentration sensor, force sensors and 

humidity sensors are considered in this work. It is found that the proposed 

calibration technique gives fast, robust and satisfactory results. 
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1. INTRODUCTION  

Nearly all types of measurement systems which include industrial sensors suffer from measurement 

errors, i.e., offset, gain, and linearization errors [1, 2]. Sensors’ calibration is an important issue in industry. It 

provides precise measurements that increase productivity, less harm to environment, and increase safety 

precautions. The calibration process is a method to reduce the difference between the actual value of the 

physical variable and the value that has been measured by the sensor. The calibration process becomes 

inaccurate in the case that the sensor has nonlinear characteristic between its input physical variable and its 

output variable which is in most cases are voltage or current. There are many methods to overcome this 

problem such as look-up tables , polygonal interpolation, polynomial approximation, curve fitting and cubic 

spline interpolation, and inverse sensor model using artificial neural networks (ANNs). 

The look-up table is easy to implement. A microprocessor uses stored data pairs of input and output 

for the evaluation of measured value [3]. However, many pairs of data points have to be used to achieve 

satisfied accuracy. Therefore, memory size is necessary for storage of a look-up table. Polygonal 

interpolation needs fewer data points to calibrate sensor characteristics. Spaces between each pair of adjacent 

points are interpolated with straight lines. When the characteristic has a high degree of nonlinearity, more 

points are needed to achieve higher accuracy. Polynomial approximation calibrates sensor characteristics 

using polynomials. Mostly used polynomials are third-order polynomials [4, 5]. Using spline interpolation, a 

parabola curve is used between every two adjacent measured data points [6]. ANNs have been used in many 

engineering applications among them is system modeling and inverse modeling. If one can view sensor 

calibration as a method to find the inverse model of that sensor, then ANNs become promising solution to 

https://creativecommons.org/licenses/by-sa/4.0/
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our problem. Recently, many researchers proposed different ANN structures and training algorithms to 

calibrate different sensors usually used in industry [7-9]. Environmental effect on sensor response as 

temperature was eliminated using ANN [10-12]. ANN is also applied to calibrate a quantum photonic sensor 

[13]. Forced sensors in robot tools of teleoperation surgeray was enhanced by ANN calibration [14]. 

Furthermore, ANN, in deep learning approach was also proposed for blindly calibrate sensor measurements 

named projection-recovery network (PRNet) [15,16]. In this work, ANN trained by scaled conjugate gradient 

(SCG) algorithm is proposed as a general structure and learning approach to calibrate most widely used 

industrial sensors. 

 

   

2.  PROBLEM DEFINITION 

Sensors are vastly used in industry to measure physical quantities (force, pressure, temperature, 

speed, position, humidity, and concentration) by usually converting them to equivalent electrical signals. The 

mathematical models for those sensors are usually nonlinear in either exponentiail form: 

 

𝑦 = 𝑘𝑒𝑎𝑥 + 𝑏 + 𝐷(𝑥)  (1) 

 

or in polynomial form: 

 

𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝐷(𝑥) (2) 

 

Where y is the required measured physical parameter, x is the equivalent electrical signal, a, b, c, are 

constants, and D(x) is other effective parameter from the industrial process or from the environment. 

However, in the monitoring side, it is required to have the inverse relationship of (1) and (2). This is what is 

called sensors calibration. 

 

 
 

3. ARTIFICAIL NEURAL NETWORK IN SENSOR CALIBRATION 

The ANN comprises of input layer, hidden layers, and output layer as shown in Figure 1 [17, 18]. 

Each layer contains number of nodes with nonlinear input-output function (usually sigmoidal function). The 

layers are connected with lines assigned by weight which are numbers multiplied with every node of a 

particular layer to form the next layer. These weights are updated during the learning process to satisfy 

particular cost function. There are many types of ANN structures such as feed-forward, and Elman NN. The 

most famous supervised training algorithm is the backpropagation which is based on the gradient search 

method. The proposed procedure in this work is based on inverse model of the sensor model (1) or (2). The 

sensor and ANN are connected in cascade in which the sensor output response is applied to the inputs of 

ANN as shown in Figure 2. Output of the ANN is the estimation of the measured value. To achieve this, the 

ANN has to be trained with sufficient training input data in order to minimize error between the actual and 

the estimated sensed values. The SCG is adopted to train the ANN [19].  

 

 

 
 

Figure 1. The structure of the ANN  



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 10, No. 2, April 2021:  680 – 688 

682 

 
 

Figure 2. Sensor inverse-model learning 

 

 

4. THE SCALED CONJUCATE GRADIENT ALGORITHM 

The SCG, pioneered by Moller [20, 21], was proposed to avoid the time-consuming line search. The 

basic idea is to combine the Levenberg-Marquardt algorithm with the conjugate gradient approach. The SCG 

is completely automated, no critical user-dependent parameters, and overcome the problem of determining an 

appropriate step size. Moller indicated that the SCG is noticeably faster than the standard back-propagation 

training algorithm. 

SCG is a supervised learning algorithm in the feed-forward neural networks. In spite of using 

member of the class of conjugate gradient methods, the SCG utilizes theories of the general optimization 

strategy. However, it selects the search line and step size efficiently depending on information from the 

second order approximation represented by:  
 

' ''1
( ) ( ) ( ) ( )

2

T TE w y E w E w y E w y+  + +  (3) 

 

In SCG, each iteration computes optimal distance. The line search is then performed to determine the optimal 

distance to move along the current search direction as: 
 

1 *k k k kw w a p+ = +  (4) 

 

Then the next search direction is calculated so that, it is conjugated to previous search line directions. 

Actually, 𝑝𝑘 is a function of both the error function of the Hessian matrix and the matrix of the second 

derivatives. In SCG, 𝑎𝑘 is used to sharpen and to smooth the indefiniteness of the Hessian matrix. The SCG 

algorithim is summarized in the following steps [19]. 

1. Choose weight vector w1 and scalars σ > 0, λ1>0 and λ1̅=0. 

Set p1=r1=-E ̀(w1), k=1 and success=true. 

2. If success=true then calculate second order information: 
 

𝜎𝑘 =
𝜎

|𝑝𝑘|
, 

 

𝑠𝑘 =
𝐸̀(𝑤𝑘+𝜎𝑘𝑝𝑘)− 𝐸̀(𝑤𝑘)

𝜎𝑘
, 

 

𝜎𝑘 = 𝑝𝑘
𝑇𝑠𝑘. 

 

3. Scale 𝑠𝑘:  
 

𝑠𝑘 = 𝑠𝑘 + (𝜆𝑘−𝜆̅
𝑘)𝑝𝑘 , 

 

𝛿𝑘 = 𝛿𝑘 + (𝜆𝑘−𝜆̅
𝑘)|𝑝𝑘|2. 

 

4. If 𝛿𝑘≤ 0 then make the Hessian matrix positive definite: 
 

𝑠𝑘 = 𝑠𝑘 + (𝜆𝑘 − 2
𝛿𝑘

|𝑝𝑘|2)𝑝𝑘, 
 

𝜆̅𝑘 = 2(𝜆𝑘 −
𝛿𝑘

|𝑝𝑘|2), 
 

𝛿𝑘 = −𝛿𝑘 + 𝜆𝑘|𝑝𝑘|2, 𝜆𝑘 = 𝜆̅
𝑘. 

 

5. Calculate step size: 
 

µ𝑘 = 𝑝𝑘
𝑇𝑟𝑘 , 𝛼𝑘 =

µ𝑘

𝛿𝑘
. 
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6. Calculate the comparison parameter: 𝛥𝑘 =
2𝛿𝑘[𝐸(𝑤𝑘)−𝐸(𝑤𝑘+𝛼𝑘𝑝𝑘)]

µ𝑘
2  . 

 

7. If 𝛥𝑘 ≥ 0 then a successful reduction in error can be made: 
 

𝑤𝑘+1 = 𝑤𝑘 + 𝛼𝑘𝑝𝑘 , 
 

𝑟𝑘+1 = −E ̀(𝑤𝑘+1), 
 

𝜆̅𝑘 = 0, success=true. 
 

8a.  If k mod N=0 then restart algorithm: 𝑝𝑘+1 = 𝑟𝑘+1 

else create new conjugate direction: 
 

𝛽𝑘 =
|𝑟𝑘+1|2−𝑟𝑘+1𝑟𝑘

µ𝑘
, 

 

𝑝𝑘+1 = 𝑟𝑘+1 + 𝛽𝑘𝑝𝑘. 
 

8b. If 𝛥𝑘 ≥ 0.75 then reduce the scale parameter  
 

𝜆𝑘 =
1

2
𝜆𝑘. 

else a reduction in error is not possible:𝜆̅
𝑘 = 𝜆𝑘, success=false. 

9. If 𝛥𝑘 ≥ 0.25 then increase the scale parameter:  
 

𝜆𝑘 = 4𝜆𝑘. 
 

10. If the steepest descent direction 𝑟𝑘 ≠ 0 then set k=k+1 and go to 2 

else terminate and return 𝑤𝑘+1 as the desired minimum. 

 

 

5. RESULTS AND DISCUSSION 

The proposed sensor calibration procedure is applied to three industrial sensors which are the force 

sensor, the humidity sensor, and the gas concentration sensor [22]. The following error equation is used to 

indicate the accuracy of obtained inverse model using the proposed ANN [17]. 
 

𝐸𝑟𝑟𝑜𝑟% = |
𝐴𝑐𝑡𝑢𝑎𝑙 𝑑𝑎𝑡𝑎−𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑  𝑑𝑎𝑡𝑎

𝐴𝑐𝑡𝑢𝑎𝑙 𝑑𝑎𝑡𝑎
| × 100  (5) 

 

5.1.  The calibration of the force sensor 

A force sensor type FSR402 is calibrated in this section. In which RM is the sensor’s sensitivity 

resistance. The original sensor data are listed in Table 1 and shown in Figure 3 [23]. In order to obtain the 

inverse model of this sensor, the SCG algorithm is used to train ANN with two inputs (the output voltages at 

RM=3K and RM=100K), one hidden layer with 15 nodes, and the output is the sensed force in (g). The 

training of ANN is accomplished with minimum error as indicated in Table 2. The trained ANN is then tested 

for RM=10K, 30K, 47K. In Figure 4, the input to the trained ANN is the voltage data for RM=30K and 47K 

while in Figure 5 the input to the trained ANN is the voltage data for RM=10K and 47K. The obtained graphs 

indicate that the trained ANN is faithfully represented the inverse force sensor model under different 

sensitivity resistance as indicated by the minimum error shown in Table 3. 

 

 

Table 1. The force sensor input output data 
Force 

(g) 

Volt Output 

at RM=3K 

Volt Output 

at RM=10K 

Volt Output 

at RM=30K 

Volt Output 

at RM=47K 

Volt Output 

at RM=100K 

25 0.2 0.8 2.3 2.5 3.52 

50 0.5 1.4 2.6 3.3 4 
100 0.8 1.8 3.2 3.5 4.3 

200 1 2.3 3.5 4 4.5 

315 1.3 2.5 3.8 4.21 4.6 

465 1.5 2.7 4 4.35 4.69 

580 1.7 3 4.12 4.42 4.71 

725 1.8 3.2 4.25 4.5 4.8 
900 1.94 3.4 4.3 4.55 4.81 

1000 2 3.5 4.35 4.56 4.83 
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Figure 3. The original data for the force sensor 

 

 

 
 

 

Figure 4. Tested ANN for RM 30K and 47k 

 

Figure 5. Tested ANN for RM 10K and 47K 

 

 

Table 2. Trained ANN response for RM=3K and 100K 
Force sensor (RM=3K) Force sensor (RM=100K) 

Volt 

(mv) 

Actual 

force (g) 

Measured 

force by ANN 

Error 

% 

Volt 

(mv) 

Actual 

force (g) 

Measured 

force by ANN 

Error 

% 

0.8 25 25.001 0.004 2.3 25 25.001 0.004 

1.4 50 50.0023 0.0044 2.6 50 50.0023 0.0044 
1.8 100 100.0004 0.0004 3.2 100 100.0004 0.0004 

2.3 200 200.001 0.0005 3.5 200 200.001 0.0005 

2.5 315 314.999 0.00031 3.8 315 314.999 0.00031 
2.7 465 465.0001 0.00002 4 465 465.0001 0.00002 

3 580 580.0003 0.00005 4.12 580 580.0003 0.00005 

3.2 725 725.003 0.00041 4.25 725 725.003 0.00041 
3.4 900 900.001 0.0001 4.3 900 900.001 0.0001 

3.5 1000 1000.003 0.0003 4.35 1000 1000.003 0.0003 

 
 

Table 3. Trained ANN response for RM=10K, 30K and 47K 
Force sensor (RM=10K) Force sensor (RM=30K) Force sensor (RM=47K) 

Volt 
(mv) 

Actual 

force 

(g) 

Measured 

force by 

ANN 

Error 
% 

Volt 
(mv) 

Actual 

force 

(g) 

Measured 

force by 

ANN 

Error 
% 

Volt 
(mv) 

Actual 

force 

(g) 

Measured 

force by 

ANN 

Error 
% 

0.8 2.5 25.034 0.13 2.3 25 25.007 0.028 2.5 25 25.007 0.028 
1.4 50 49.996 0.01 2.6 50 50.011 0.022 3.3 50 50.011 0.022 

1.8 100 99.941 0.05 3.2 100 100.003 0.003 3.5 100 100.003 0.003 

2.3 200 199.853 0.07 3.5 200 199.966 0.017 4 200 199.966 0.017 
2.5 315 315.59 0.18 3.8 315 314.992 0.002 4.21 315 314.992 0.002 

2.7 465 463.417 0.34 4 465 465.167 0.035 4.35 465 465.167 0.035 

3 580 583.8 0.65 4.12 580 579.777 0.038 4.42 580 579.777 0.038 
3.2 725 720.219 0.65 4.25 725 725.104 0.014 4.5 725 725.104 0.014 

3.4 900 903.471 0.38 4.3 900 900.082 0.009 4.55 900 900.082 0.009 

3.5 1000 998.687 0.13 4.35 1000 999.904 0.009 4.56 1000 999.904 0.009 
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5.2.  The calibration of the humidity sensor 

The characteristics of humidity sensing elements type T010 (850) depend on the environmental 

temperature. Temperature change causes changing in the ceramic elements resistance. Table 4 shows the 

characteristics of a sensing element in the range from 20 to 50°C and shown in Figure 6 [24]. The ANN that 

represents the inverse model of this sensor has two inputs (the sensor output voltages measured at 20 and  

50°C), one hidden layer with 3 nodes, and the output is the sensed relative humidity. The training of ANN is 

accomplished with minimum error as indicated in Table 5. Then the trained ANN is tested with two input 

voltages, the first one is the measured sensor voltage and the second is the stored voltage of either 20°C or 

50°C. The resultant relative humidity obtained from the trained ANN is so close to the actual humidity as 

represented by calculated error of Table 6 and coincided characteristics shown in Figure 7. 

 

Table 4. Temperature effect on humidity sensor 

characteristics 
Relative 

Humadity 

RH% 

200C 250C 300C 400C 500C 

12% 1.018 1.036 1.044 1.058 1.078 

33% 1.095 1.114 1.122 1.136 1.156 

44% 1.165 1.183 1.191 1.205 1.225 
53% 1.26 1.278 1.286 1.300 1.320 

64% 1.55 1.568 1.577 1.591 1.612 

75% 2.022 2.04 2.049 2.064 2.085 
85% 2.51 2.53 3.539 3.554 3.575 

97% 3.156 3.176 4.236 4.145 4.412 
 

Table 5. Trained ANN response for T010(850) at (20, 

50)°C 
Humadity sensor at 200 Humadity sensor at 500 

Actual 

RH% 

Measured 

RH% by 
NN 

Error% 
Actual 

RH% 

Measured 

RH% by 
NN 

Error% 

12% 12.02% 0.16 12% 12.02% 0.16 

33% 32.93% 0.21 33% 32.93% 0.21 
44% 44.06% 0.13 44% 44.06% 0.13 

53% 52.99% 0.01 53% 52.99% 0.01 

64% 63.99% 0.01 64% 63.99% 0.01 
75% 75.002% 0.002 75% 75.002% 0.002 

85% 85.001% 0.001 85% 85.001% 0.001 

97% 97.0003% 0.0003 97% 97.0003% 0.0003 
 

 

 

 
 

Figure 6. The original T010(850) humidity sensor characteristics 

 

 

Table 6. Tested ANN response for T010(850) at (25,30 and 40) C0 
Humadity sensor at 250 The input 

voltages is that for 20 and 250 

Humadity sensor at 300 The input 

voltages is that for 20 and 300 

Humadity sensor at 400 The input 

voltages is that for 20 and 400 

Actual 

RH% 

Measured 
RH% by 

NN 

Error% 
Actual 

RH% 

Measured 
RH% by 

NN 

Error% 
Actual 

RH% 

Measured 
RH% by 

NN 

Error% 

12% 12.014% 0.11 12% 12.023% 0.19 12% 11.238% 6.3 
33% 32.922% 0.23 33% 32.916% 0.25 33% 31.850% 3.4 

44% 44.069% 0.15 44% 44.090% 0.2 44% 43.595% 0.9 

53% 52.941% 0.11 53% 52.908% 0.17 53% 52.717% 0.53 
64% 64.045% 0.07 64% 64.030% 0.04 64% 64.0009% 0.001 

75% 75.073% 0.09 75% 75.051% 0.06 75% 75.060% 0.08 

85% 85.096% 0.11 85% 85.013% 0.01 85% 84.991% 0.01 
97% 97.022% 0.02 97% 97.054% 0.05 97% 96.973% 0.02 
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(a) (b) 

  

 
 

(c) 
 

Figure 7. The response for the tested ANN, (a) Under temperature 25°C, (b) Under temperature 30°C,  

(c) Under temperature 40°C 

 

 

5.3.  The calibration of the gas concentration sensor 

Gas sensor calibration is the process of converting the output voltage generated by the gas sensor 

into a concentration value that coincides with the actual concentration value. In this section, a solid-state CO 

gas concentration sensor is used to be calibrated. The original data for this sensor is shown in Table 7 and 

clearly illustrated Figure 8 [25]. The ANN that represents the inverse model of the gas sensor has one input 

(the sensor output voltage), one hidden layer with two nodes, and the output is the sensed gas concentration 

in (ppm). The trained ANN is faithfully represented the inverse gas concentration sensor model as indicated 

by the minimum error shown in Table 8 and clearly illustrated in Figure 9. 

 

 

Table 7. Gas concentration data 
Actual gas concentration in 

(ppm) 
Sensor output voltage (mv) 

0.5 1546.75 

1 1906.37 
1.5 2072.31 

2 2180.5 

2.5 2243.5 
3 2285.87 

 

Table 8. Tested ANN response for gas sensor 
Input 

voltage 

(mv) 

Actual gas 
concentration in 

(ppm) 

Measured gas 
concentration 

(ppm) by ANN 

Error% 

1546.75 0.5 0.5003 0.06 
1906.37 1 0.9989 0.11 

2072.31 1.5 1.5013 0.08 

2180.5 2 1.9995 0.02 
2243.5 2.5 2.501 0.04 

2285.87 3 3.001 0.03 
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Figure. 8. The original gas sensor characteristics 

 

Figure 9. Tested ANN for gas sensor 

 

 

6. CONCLUSION  

The proposed ANN procedure based on inverse model of sensor can eliminate the effect of 

nonlinearity in many industrial sensors. Moreover, the environmental effects on some sensors, as the case of 

ambient temperature on measurement of relative humidity sensors, can also be encountered by ANN 

calibration procedure. In the case of force sensor, it is found that using ANN in calibration process can 

handle the change in the value of the sensitivity resistor without changing the sensor itself. Future work in 

this area can be done to calibrate more than one sensor in one ANN taking into consideration all the effective 

environmental factors. Moreover, one can implement the trained ANN that represents the sensor inverse 

model using micro controller for real time applications. 
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