Bulletin of Electrical Engineering and Informatics
Vol. 10, No. 3, June 2021, pp. 1687~1700
ISSN: 2302-9285, DOI: 10.11591/eei.v10i3.2526 O 1687

Embedded operating system and industrial applications: a

review

Yew Ho Hee, Mohamad Khairi Ishak, Mohd Shahrimie Mohd Asaari, Mohamad Tarmizi Abu Seman
School of Electrical and Electronics Engineering, Engineering Campus, Universiti Sains Malaysia,

Nibong Tebal, 14300, Penang, Malaysia

Article Info

ABSTRACT

Article history:

Received Apr 20, 2020
Revised Mar 5, 2021
Accepted May 3, 2021

Keywords:

Cooperative

Internet of things
Operating system
Real-time operating system
Super loop

The complexity of an embedded system is directly proportional to the
requirements of industrial applications. Various embedded operating system
(OS) approaches had been built to fulfil the requirements. This review aims
to systematically address the similarities and differences of the embedded OS
solutions and analyse the factors that will influence decision-making when
choosing what solution to use in the applications. This paper reviews three
standard solutions; super loop, cooperative, and real-time operating system
(RTOS). These are commonly used in industrial applications. By grouping
the tasks in the foreground and background execution region, the concept and
working principle of each of them are reviewed. The unique feature of RTOS
in the context of task switching was used to define the deterministic
characteristic of meeting the deadlines. The importance and performance of
this characteristic is addressed and compared among various solutions in this
paper. Subsequently, this paper reviewed the internet of things (loT)

requirements, automotive, medical and consumer electronics industry. The
influential factors on choosing the right embedded OS to be used are
extracted based on the requirements. They are reviewed in the perspective of
memory footprint, regulated standards, cost-effectiveness, time effectiveness,
and scalability.

This is an open access article under the CC BY-SA license.

©Nole

Corresponding Author:

Mohamad Khairi Ishak

School of Electrical and Electronic Engineering
Engineering Campus, Universiti Sains Malaysia
Nibong Tebal, 14300, Penang, Malaysia

Email: khairiishak@usm.my

1. INTRODUCTION

An embedded system integrates both electronic and software that is designed to run a defined
function. A modern embedded system usually comes with a microcontroller, which could be programmed to
perform various tasks such as temperature sensing, battery level sensing, and acceleration data retrieving
from accelerometer. This system is used in many applications such as air conditioning, remote commander,
car entertainment system, flight navigation system, robotic automation in factory, MP3 player, smartphone,
and smart watch. Personal computers (PC) that run general-purpose operating systems such as Windows,
Linux and Mac OS could accomplish a lot of tasks and are more resources hungry in high processing power,
graphic processing, and memory usage. In contrast, embedded software is specifically designed for an
application. For example, MP3 players could only do one job well that is audio playback while a PC could be
used for video playback, audio playback, graphic editing, and text editing.

An embedded OS is typically designed for resource constrained microcontrollers, especially the
memory footprint such as read-only-memory (ROM) and random-access-memory (RAM). A typical PC

Journal homepage: http://beei.org

https://creativecommons.org/licenses/by-sa/4.0/

1688 O ISSN: 2302-9285

usually comes with gigabytes of RAM and terabytes of hard disk space, whereas memory in microcontroller
is extremely small when compared with a PC. For example, the 8-bit microcontroller STM8S003F3 has only
8 Kilo bytes (Kbytes) of ROM and 1 Kbyte of RAM [1], while the 32-bit microcontroller STM32F103R8 has
64 Kbytes ROM and 20 Kbytes RAM only [2]. This is why an embedded OS is naturally built to be resources
sensitive and efficient. This paper will cover three types of embedded OS solutions, which are commonly
used in applications with complexity ranging from mid-level until low-level. This can be applications such as
MP3 player, TV, remote control, air conditioning, and refrigerator. The solutions are super loop, cooperative,
and real time operating system (RTOS). The concept of how they work is explained from the big picture to
the software level. The accuracy of meeting deadlines is also explained with example scenarios.

Lastly, this paper includes a review of how embedded OS is applied in industrial applications. The
review encapsulated the internet of things (1oT), automotive, medical and customer electronics industry. Each
industry has different standards and requirements, especially to regulate each application's robustness and
safety issues. This will define the nature of how embedded OS will be designed to fit in accordingly. Apart
from that, when the factors such as time to market and cost-effectiveness are included, the complexity of
selecting the proper embedded OS will be increase. How these factors relate to the embedded OS in industrial
applications is reviewed and explained.

2. EMBEDDED OPERATING SYSTEM
2.1. Super loop
2.1.1. Concept of super loop

The operating system on small embedded systems is typically designed in a foreground and
background pattern [3], [4]. As illustrated in Figure 1, the background region contains the tasks which are to
be executed infinitely. When an interrupt is triggered, the background tasks are preempted and the software
will switch over to the interrupt service routine (ISR), which conceptually belongs to the foreground region.
This process is called preemption. After the ISR is served, it will go back to the exact point where it had
stopped previously in the background region. This is exactly how super loop embedded OS works. The tasks
in the background region are executed sequentially. The next task will be executed only when the previous
task is served. When the last task in the sequence is served, it will go back to the first task and start over
again from top to bottom.

2.1.2. Working principle of super loop

When the program is started, it will go through the pin configuration, clock tree and component
drivers before entering the infinite loop. After it enters into the infinite loop, it will never exit. The tasks
inside will be executed cyclically as illustrated in Figure 2. There are three tasks (Task 1, Task 2 and Task 3)
in the background region and each of them will take 4 milliseconds (ms), 2 ms and 3 ms to execute,
respectively. The Systick timer is configured to be triggered every 3 ms. At the beginning, when the timer is
triggered, Task 1 is halted and preempted while in the middle of execution and the program will go to serve
IrgSystick in the foreground region. After IrqSystick is served, the program will resume the execution of
Task 1 from the point where it had been halted previously. This preemption operation will repeat every 3 ms
during runtime and the task that is to be preempted will depend on which task is running when the interrupt is
triggered. In other words, this could be unpredictable.

Time
Background Foreground Background Foreground
Infinite Loop
Infinite Loop

== :l Task_1

.| ISR_1 | . IrgSystick
Task_1 S

Infinite Loop Task_2
= . lrgSystick

= .I S l Task_3
Infinite Loop : . IrgSystick

Task_1..... (repeat) |)

Figure 1. Concept diagram on how super loop work Figure 2. Task scheduling in super loop

Bulletin of Electr Eng & Inf, Vol. 10, No. 3, June 2021 : 1687 — 1700

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 1689

Preemption is particularly important for the deterministic behavior in the super loop solution. For
time critical tasks, it is usually handled by the ISRs in the foreground region to ensure that the deadline is not
missed. This is because the preemption is fast and it will accurately respond to how the timing or interrupt is
defined. This is particularly important if there are many heavy loaded tasks in the background region. As
illustrated in Figure 3, there are 10 tasks and each of them takes 10 ms to execute. The background region
will be loaded with 100 ms capacity, and in principle, each individual task will be served only every 90 ms. If
there is an external signal which the system has to monitor every 10 ms, the deadline will be missed. This is
particularly important for critical applications such as automation industry, with safety as the top priority.
Thus, Super Loop is usually in-house and used in non-critical and minor application.

Background

Time |[Infinite Loop

10 ms Task_1 «—|- External signal # 1 ready > missed
20 ms Task_2 < External signal # 2 ready > missed
30ms Task_3 «-|- External signal # 3 ready > missed
40 ms Task_4 «|- External signal # 4 ready > missed
50 ms Task_5 <} External signal # 5 ready > missed
60 ms Task_6 «—|- External signal # 6 ready > missed
70 ms Task_7 < External signal # 7 ready > missed
80 ms Task_8 «-|- External signal # 8 ready > missed
90 ms Task_9 «-|- External signal # 9 ready > missed
100 ms Task_10 «—|- External signal # 10 ready > Served
110 ms Task_1..... (repeat)

Figure 3. Super loop-external signal missed 9 times before it is served

2.2 Cooperative OSs
2.2.1. Concept of cooperative

Cooperative scheduler is probably one of the most used schedulers in embedded systems. The
fundamental concept is the same as how the super loop scheduler works-with foreground and background
region. Unlike the tasks which are executed sequentially and cyclically in super loop, the tasks are grouped
by time slots. They will run only when the particular time slot is active. When the time slot is active, the tasks
inside will be executed sequentially and they will be served only once. After that, they will remain idle until
their time slot is active again. In principle, cooperative scheduler is more organized and more deterministic
than a super loop [5], [6]. As illustrated in Figure 4, the timer is configured to keep track of time. When the
timer interrupt is triggered, the background tasks will be preempted and the timer ISR routine in the
foreground will be served to record the time [7]. For example, 1 second had passed, 2 seconds had passed,
and so on. Depending on how the requirements are defined, a flag can be set to active when the specific time
is reached inside the ISR. For example, Timer 1 flag is set to active when 1 second is reached, Timer 2 flag is
set to active when 2 seconds is reached. After that, the program will return to the exact point where it had
been halted previously in background region. With this mechanism, the scheduler could selectively execute
the tasks that belong to specific time region. For example, Task 1 will be executed only when Timer 1 flag is
active and Task 2 will be executed only when the Timer 2 flag is active. Contiki and TinyOS are among the
0Ss which adapted Cooperative mechanism.

2.2.2. Working principle of cooperative

In this example, the Systick timer will be triggered at every 1 ms, as illustrated in Figure5. When
Systick times out, the background task will be preempted and the program will move to the IrgSystick ISR at
the foreground region. Inside the ISR, the timer flags of 5 ms, 10 ms, 15 ms will be set to active respectively
when the time hits. In this setup, the 5 ms flag will be activated every 5 ms, 10 ms flag will be activated and
so on. As illustrated in Figure 5, Task 1 is located in the 5 ms time slot, Task 2 is located in the 10 ms time
slot and Task 3 is located in the 15 ms time slot. After the program is started, Task 1 will be the first task to
be executed when the 5 ms flag is activated. After that, the program will remain idle until the next time event
is triggered. When 10 ms hits, both 5 ms flag and 10 ms flag will be activated on the timeline. Thus, Task 1
will be executed again for second time, and later followed by Task 2. Depending on how the orientation is
designed, the sequence of task execution could be changed. On the timeline, when 15 ms hits, 5 ms flag will be
activated together with the 15 ms flag. Thus, Task 1 will be executed again for the third time, followed by Task 3.

With this scheduling methodology, time resources can be defined and distributed easily, suggesting
a more deterministic and controllable behaviour than the super loop scheduler. This is particularly crucial for
tasks that need to be served consistently and accurately to ensure that the deadline is not missed. A good
example will be key scanning which is very common in embedded systems. As shown in Figure 6, KeyScan

Embedded operating system and industrial applications: a review (Yew Ho Hee)

1690 O ISSN: 2302-9285

is designed to check the key input every 20 ms. Naturally, the key press event will not be missed within 20
ms timeframe because the time interval between key presss and key release will be more than 20 ms. With
this mechanism, more detection patterns can be further developed, such as short-pressed, long-pressed, and
press and hold.

Time

Background Foreground Background Foreground
Cooperative Cooperative Scheduler
Scheduler IraSystick
“|'T_Update System Time | " » L y‘
Cooperative Run every 1 ms
Scheduler :
“|T_Update System Time] | Task_1 G ms flag activated l
Cooperative .
by Task_1 5 ms & 10 ms flag activated l
v v Task_2
Cooperative Scheduler (Background)
- l : S
Read System Time Task_1 < 5 ms & 15 ms flag activated l
¥ 0 i Task_3
Timer_1 activated? = Execute Task 1 |
lNO Task_1 < 5 ms & 10 ms flag activated ‘
Timer_2 activated? —t— Execute Task 2 » s
" - Task_2 !
| v
Figure 4. Concept diagram of how cooperative Figure 5. Tasks scheduling in cooperative scheduler
scheduler works
Background Foreground
Time Cooperative Scheduler Run every 1 ms
0ms IrqSystick
- > T
10 ms s
20 ms KeyScan 20 ms flag activated]
30ms | j
40ms KeyScan 20 ms flag activated j
50 ms 1
60 ms KeyScan i i
70 ms
80 ms KeyScan
45ms avass
v V

Figure 6. Key scanning in cooperative scheduler

Even though the key detection by external interrupt would be more accurate, the advantages such as
matrix keypad scanning and freedom to use non-external interrupt supported general purpose input output
(GPIQ) pins suggest that the time-scheduled scanning is a better approach.

2.3 Real-time operating system
2.3.1. Concept of RTOS

Real-time operating system (RTOS) is much more complicated than super loop and cooperative
scheduler. It is all about the deterministic capability that makes it special and powerful. In principle, there are
two types of RTOS: hard RTOS and soft RTOS [8]. The hard RTOS always meets the deadline, while the
soft RTOS can meet the deadline most of the time. The hard RTOS will fit in for time critical real time

Bulletin of Electr Eng & Inf, Vol. 10, No. 3, June 2021 : 1687 — 1700

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 1691

applications such as in automotive and military industry where missing any deadline would mean a disaster
[9]. The car airbag is a good example. If the time requirement to activate the airbag must be less than 50 ms
right after the impact is detected, then the system must respond before the deadline hits.

Unlike super loop and cooperative scheduler which can be easily and quickly made in-house, the
industry usually relies on third-party solutions to RTOS. The core of RTOS is called the kernel or scheduler.
It is responsible to manage the tasks in the system. With the scheduling methodology such as round robin
with time slicing, a task can be purposely halted during execution when timed out to have another task with
the same priority level to start executing [10]. This is also called multitasking. It creates an illusion that
multiple tasks are running in parallel even with a single core processor, but in fact only a single task is being
executed in a single time. Figure 7 demonstrates how round robin with time slicing works. Task A, Task B,
and Task C are created with equal priority. Task A, Task B, and Task C require three, two, and one time slots
respectively, to finish execution. The time slots are divided equally (T1=T2=T3)

Time
v Task_A_1
Task_B_1
Task_C
Task_A_2
Task_B_2
Task_C
Task_A_3
Task_B_1
Task_C

v

Figure 7. Tasks are time sliced and scheduled in round robin pattern

The industrial RTOS’s scheduler is far more sophisticated than just time slicing. Figure 8 presents
how the whole system looks like in a commercial RTOS-uC/OS-I11 [11]. In principle, it is encapsulated in a
background and foreground design pattern. The tasks are located in the background region while the ISR is
located in the foreground region. The low priority tasks are scheduled in the round robin time slicing pattern.
When an interrupt occurs, the running task is preempted, and the program will move to the ISR to serve the
interrupt. The ISR will trigger a high priority task to active. Right after the ISR is served, the scheduler will
notice that a higher priority task is being activated. Thus, it will serve the higher priority task rather than go
back to the previous halted task. With this mechanism, the deadline can be guaranteed. Once the higher
priority task is served, the previous halted task will be resumed.

Time
Background Foreground

Low Priority Tasks

Time
Task AL
Task 8.1

Task A2
Task 82
Task C
Task A 3
Task 81
Task €

--------------------- 1 : -ISR_1

High Priority Task

Low Priority Tasks

Figure 8. An overview of how RTOS works

2.3.2. Working principle of RTOS
Figure 9 demonstrates how the car airbag can be triggered with the RTOS solution. The priorities for
each task and execution time are shown in Table 1. TriggerAirBag has the highest priority among all the

Embedded operating system and industrial applications: a review (Yew Ho Hee)

1692 O ISSN: 2302-9285

tasks as the deadline must not be missed. The time slicing is configured to 2 ms. Hence, Task 1, Task 2, and
Task 3 which is configured with the same priority level will be executed sequentially with a task switch at
every 2 ms.

Table 1. Tasks priority and execution time information for car airbag example

Tasks Priority Execution Time
TriggerAirBag 1-High ~1ms
BuzzerOn 2-Mid ~2ms
Task_1 3-Low ~1ms
Task_2 3-Low ~2ms
Task_3 3-Low ~2ms

When the program starts, Task 1 is executed twice before it switches to Task 2 as its execution time
is 1 ms. Task 2 will be executed until it finishes as the execution time is 2 ms. Afterward, Task 3 will start
and at the middle of execution (timeline 5 ms), an interrupt is triggered as the system detected that the safety
belt on driver seat is not locked. The product requirements request that the system shall respond with the
beeper sounding in this scenario.

Subsequently, Task 3 is preempted and the software will move to serve the ISR. The BuzzerOn task
will be set to active by the ISR in order to generate the beeper sound. When the program returns, it does not
move back to Task 3 as the scheduler detected that a higher priority task (BuzzerOn) is activated. BuzzerOn
will now be served, but shortly after that, the system detected a hit impact on timeline 6 ms. BuzzerOn will
be preempted and the system will move again to ISR [10]. The task TriggerAirBag will be set to active and
when the program returns, it will move to TriggerAirBag as it has higher priority than BuzzerOn. BuzzerOn
will be served to finish only after TriggerAirBag is served. Task 3 will be resumed again after the program
returns from BuzzerOn.

ISR

Foreground
1

o-->

Task_1 *-->0--> *-->0-->
Task_2 13 >

Background

Task_3

Figure 9. Example of how the car airbag triggering works in RTOS

With this mechanism, the deadline of the task with higher priority such as TriggerAirBag can be a
safeguard as it would be served right after it is activated. The swiftness of response will not be guaranteed if
the same scenario is handled by a cooperative scheduler, as shown in Figure 10. In this design, the
TriggerAirBag will be called at every 5 ms and it will be triggered only if there is a hit impact. The hit impact
is detected at timeline 12 ms, but the system will experience 3 ms delay to respond as TriggerAirBag will be
served again only at timeline 15 ms.

Background Foreground

Time |Cooperative Scheduler
1ms

, Irgoy

2ms B Run every 1 ms
3ms

4ms TriggerAirBag S ms flag

11ms TriggerAirBag |« 5 ms & 10 ms flag activated
12ms T

13ms Task_2

14 ms

i
15ms TriggerAirBag | |

16 ms

Figure 10. TriggerAirBag could not be triggered instantly in cooperative scheduler

Bulletin of Electr Eng & Inf, Vol. 10, No. 3, June 2021 : 1687 — 1700

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 1693

3. INDUSTRIAL APPLICATIONS

The world gone through a few waves of the industrial revolution (IR) before reaching this high
technological level as what we could produce today. The first wave started about year 1700 in Great Britain
where the industry experienced a transformation from hand manufacturing methods to machine, which was
driven by steam power [12]. The second wave began in the beginning of the 20th century when electricity
became the primary source of power as it is more consistent and cleaner than water and steam [12]. The
industrial applications expanded with the invention of electrical systems and correlated new designs. It grew
rapidly until the last few decades of the 20th century. Industrial 3.0 kick started with a higher level of
automation in machinery. The invention of transistor and later the integrated circuit with microcontroller
solutions had greatly driven this automation. The higher the automation is, the greater the productivity is as
there is lesser uncertainty from human error.

The waves of industrial revolution had not only changed the way on how we produce things, it has
influenced on what we could produce as well. The capability to design and the capability to produce a
product is correlated with each other as they grew and expanded together. Aside from improving
productivity, we could now design products with higher complexity such as cars, airplanes, and air
conditioning, which was unthinkable before the industrial revolution. The more complex a product is, the
more demanding the software is. The capability of what an embedded OS could do evolved with the needs of
the application. This is how the embedded OS started from the simple super loop and gradually developed to
the RTOS solution. What an embedded OS is best fit for depends on a lot of factors. The sections below will
cover how industry had used the super loop, cooperative driven and RTOS in applications. 10T, automotive,
medical and consumer electronics domain are discussed as most related to most daily lives.

3.1. Internet of things

The revolutionary move of industry did not end at 3.0 with the achievement in automation. IR 4.0
had started years back, focusing on integrating the physical, digital, and biological field. Since then,
breakthrough and advancement in technologies such as the loT, artificial intelligence (Al), interconnected
automation, and biotechnology is flourishing. 10T is the integration of an embedded system with sensors and
connectivity to the Internet for data collection. Various improvements could be achieved with post-processed
information. Figure 11 illustrates an example of how loT could be applied for agricultural use. Embedded
systems with temperature and humidity sensors (S1, S2, and S3) are installed at different locations in the
farm. The systems are connected to a cloud server and the data is transmitted hourly and daily. Later,
database in the cloud server is filled with a huge amount of data. With the help of post data processing, the
change in temperature and humidity level inside the farm could be visualized and potential problems such as
temperature too high at any particular time could be identified. Thus, accurate improvement action could be
rolled out and this helps to improve productivity. The farmers in China already apply loT for dairy cows.
Sensors that gather data such as temperature and heart rate were installed and the data helped to improve milk
production. It helped farmers to make an extra USD420 each year with the profit increased by 50% annually
[13].

Physical I| Digital

- &

Date Time |Station | Temp. [Humidity
= [10.08.2018|12:00am| s1 | 17 50
 [10.08.2018|12:00aMm| s2 | 15 30
" [10.08.201812:00am| s3 | 14 40
10.08.2018| 1:00AM | s1 | 18 52
—
10.08.2018| 1:00aM | s2 | 15 30
| [10.08.2018| 1:00am | s3 | 14 38

Figure 11. Sensors installed on farm to monitor the changes of temperature and humidity over time

IoT is an important subject in the industry nowadays. According to the embedded market survey
which was conducted by AspenCore in 2017 [14], 50% among 1234 respondents voted that 10T development

Embedded operating system and industrial applications: a review (Yew Ho Hee)

1694 O ISSN: 2302-9285

will be important to themselves and their organization in the next 12 months. At the same time, 63.5% of
respondents suggested that they will have one or more projects devoted to 10T. The survey also suggests that
lIoT is applied mostly for industrial application (19.7%) such as connected robotic automation, and
subsequently followed by the sensor-driven application (18.3%) [14].

IoT will not be possible without connectivity. Various wireless interfaces and protocols are deployed
on loT applications. IEEE 802.15.4, Bluetooth Low Energy and LPWAN are among the common wireless
interfaces for 10T devices [15], [16]. IEEE 802.15.4 defines the protocol and compatible interconnection for
data communication devices using low-data-rate, low-power, and low-complexity short-range radio
frequency (RF) transmissions in a wireless personal area network (WPAN). Various protocols built upon
IEEE 802.15.4 standard, such as IPv6 over low-power wireless personal area networks (6LoWPAN), routing
protocol for LLNs (RPL), and constrained application protocol (CoAP) [17], [18]. They are standardized by
internet engineering task force (IETF) and applicable to be used on home automation, wireless sensor
networking, and manufacturing loT applications. Besides that, non-IETF standardized protocols designed upon
IEEE 802.15.4 are also available, such as ZigBee, wireless highway addressable remote transducer (HART),
MiWi by Microchip Technology, and ISA 100 by International Society of Automation (ISA) [18], [19].

Low-power wide-area network (LPWAN) is designed to have long-range communication at low
baud rate among connected objects. Various protocols are designed for LPWAN, such as long range (LoRa),
SigFox, random phase multiple access (RPMA), and symphony link. Bluetooth low energy (BLE) is
designed for constrained low power application compared to classic Bluetooth. There are many profiles
available on top of BLE, such as mesh profiles, health care profiles, and generic sensors [18], [19]. Table 2
lists some loT oriented embedded OS with supported 10T protocols. The solutions that come with network-
ready protocols could save implementation time. Simultaneously, the design that is naturally dedicated for
constrained devices with lower power and small memory footprint could fit into small systems. Table 3 lists
some loT oriented solution with memory footprint information. From the Table, RIOT-OS and TinyOS
memory footprint is very small in comparison to other solutions. They are occupying only 5 Kbytes and 4
Kbytes of ROM code respectively. This could easily fit into many small-sized microcontrollers.

Table 2. Embedded OS with supported 10T protocols and scheduler type

IEEE 802.15.4 LPWAN .
Name Scheduler BLOWPAN LoRa CoAP ZigBee LoRa BLE Beacon License Ref.

Contiki Cooperative Yes Yes Yes - - BSD [20],[21],[22]
RIOT-0S RTOS Yes Yes Yes - - - GNU LGPL [20],[21],[22]

Mbed RTOS Yes - - - Yes Yes MIT [20],[21]
TinyOS Cooperative Yes Yes - - - - BSD [20],[21] [22]
LiteOS RTOS Yes - - Yes - Yes BSD [201,[211,[22]

Zephr RTOS Yes Yes Yes - - Yes BSD [23],[24]

Table 3. l1oT oriented solution is designed for resources constrained devices with small memory footprint
Memory Footprint

Name Scheduler ROM (Kbytes) _RAM (Kbytes) Ref.
Contiki ~ Cooperative 30 10 [20].[21],[22]
RIOT-0S RTOS 5 15 [20],[21] [22]
Mbed RTOS 16 4 [20],[21]
TinyOS Cooperative 4 1 [20],[21],[22]
LiteOS RTOS 26 6 [20],[21] [22]
Zephr RTOS 50 8 [23].[24]

To build the 10T application more effectively, 10T-LAB [25] testbeds could be facilitated. It is an
environment where users could test the connectivity performance and build the application code without
having the actual hardware setup at their site. The tests will be done on the setup at 10T-LAB site. It offers a
combination of both 16-bit and 32-bit nodes, which basically covered most use case on the field. RIOT,
Contiki and Zephyr are among the RTOS which is available to the users on 10T-LAB testbeds.

3.2. Automotive industry

Selecting the right embedded OS to use is important for the automotive industry as their
requirements are much stricter compared to consumer electronics due to higher safety requirements. As it is a
time critical application, RTOS will naturally fit into automotive industry. On top of the strict requirements
not to miss the deadline, the requirements on the code's reliability are also regulated. Automotive companies
and academic units had formed a few consortiums to define the standards in the embedded operating system.

Bulletin of Electr Eng & Inf, Vol. 10, No. 3, June 2021 : 1687 — 1700

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 1695

Motor industry software reliability association (MISRA) was formed in response to the UK Safety
Critical Systems Research Programme. It produced coding guidelines to ensure safety, security, portability
and reliability for embedded software [26], [27]. Currently, the guidelines are available for C and C++
programming language. For the software to be compliant to MISRA, all the mandatory rules must be met. It
will be a heavy task to manually check the code compliance line by line as it is not uncommon for a standard
mid-range car to have over a million code lines. There are automated tools developed to check the code for
compliancy. There are also industrial RTOS that is MISRA compliant. The certified RTOS will help save the cost
and time needed to validate the OS part in software [27]. In principle, the bigger the system is, the greater the time
and cost could be saved. Table 4 lists some of the industrial RTOS which is compliant with MISRA C.

OSEK/VDK and AUTOSAR are other well-known automotive standards. OSEK is a German
abbreviation for “open systems and their interfaces for electronics in motor vehicle” [28]. It was founded in
1993 by a German automotive company consortium (BMW, Robert Bosch GmbH, DaimlerChrysler, Opel,
Siemens, and Volkswagen Group) and the University of Karlsruheand [28], later joined by the French
automotive company consortium (Renault and PSA Peugeot Citroén) [28] called vehicle distributed
executive (VDX) in 1994. Thus, it is called OSEK/VDK. It is later encapsulated in AUTOSAR, which
defined a broader standard for automotive systems. Unlike MISRA C or C++, which focuses on how the code
is written, OSEK/VDK focuses on producing the software's requirements such as the key characteristic
needed for a safety-critical system. All the objects are required to be built during build time and no dynamic
objects during runtime will be created. This leads to minimizing the uncertainty during runtime and promote
a safer system [27], [29]. There is a handful of industrial RTOS compliant to OSEK/VDK standard as listed
in Table 4.

Table 4. Embedded RTOS with the automotive software standards certified

RTOS MISRAC 1SO 26262 OSEK/VDX AUTOSAR License Ref.
Erika Enterprise Yes - Yes Yes GPL and GPL linking exception [30]
FreeOSEK - - Yes - GNU GPLv3 [31]
Arc Core - - Yes Yes GPL/proprietary [32]
OpenOSEK - Yes Yes LGPL [33]
Elektrobit tresos - Yes Yes Yes Proprietary [34]
ThreadX Yes Yes - - Proprietary [35]
RTX5 Yes - - - Proprietary, royalty free [36]
SafeRTOS Yes Yes Yes - Proprietary [37]
puC/OS-111 Yes - - - Proprietary [38]

3.3. Medical industry

For medical industry, IEC 62304 (Medical Device Software-Software Life Cycle Processes) is a
widely adopted standard. It defines the life cycle requirements for medical device software. It covers the
beginning stage where the development planning starts until the software is released [39], [40]. Similar to the
automotive industry, making medical software is relatively regulated. The more complicated the products is,
the more complex the embedded OS will be. The higher complexity in software is directly proportional to the
difficulty level to meet the standard. Thus, using the IEC 62304 certified embedded OS will accelerate the
product development progress [41].

Even not all medical devices require deterministic behaviour, but commercial embedded OS usually
comes with RTOS approach. The characteristic of RTOS can handle both deterministic and non-deterministic
operations and the small memory footprint requirement, promote the scalability to run on simple and
complex applications. For instance, SafeRTOS only require 6 kB to 15 kB ROM, 500 bytes RAM and 400
bytes/task Stack to run [38]. This could easily fit into a small microcontroller such as STM32F030K6, which
contains 32kB ROM and 4kB RAM. Various embedded RTOS is certified with IEC 62304, Table 5 lists
some of them. Aside scalability, the support level which provided by RTOS supplier is also a major
consideration. Along the product development, support services such as prototype bring-up activies, issues
solving, consultation, training, attentiveness, and responsiveness to query are major concerns when selecting
the supplier, aside from licensee cost.

Table 5. Embedded RTOS with IEC62304 certified

RTOS IEC 62304 License Ref.
SafeRTOS Yes Proprietary [38]
embOS Safe Yes Proprietary [40]
UC/OS-111 Yes Proprietary [39]
QNX Yes Proprietary [42]
ThreadX Yes Proprietary [36]

Embedded operating system and industrial applications: a review (Yew Ho Hee)

1696 O ISSN: 2302-9285

3.4. Consumer electronics

Comparing to automotive and medical industry, the software for consumer electronics is much less
restricted and regulated. For example, if the home air conditioning system is late for 200 ms to serve the
received remote commander code to turn off, it will not have a big impact at all to the user. As long as it
turns off, it is fine.

Decision on the embedded OS to be used is correlated to cost effectiveness. The simpler the
solution, the lower the cost. The saved cost is especially visible for products with large quantities. A huge
amount will amplify a reduction of 10 cent USD in proportion to the quantity. Super loop OS and cooperative
scheduler will consume a minimal amount of memory footprint (almost none) compared to the industrial
RTOS solution. The memory footprint in this context refers to both read-only-memory (ROM) and random-
access-memory (RAM). For example, the QP-Nano [43] which is one of the lightest RTOS solutions already
require 2 kB of ROM space to house it. The memory footprint requirements for typical RTOS solution is
even more demanding-10 kB of ROM and 10 kB of RAM [43]. If the application is planned to use an 8-bit
microcontroller with 8kB of ROM, the QP-Nano already occupies 25% of ROM space. In this context, super
loop and cooperative scheduler will be a better option as long as the product requirements can be met.

What will be the scenario to consider RTOS? Aside from the deadline requirement, the industry
used it to integrate complex software modules [44]. More and more component makers such as the Bluetooth
module and WiFi module provide software modules with an RTOS framework. The effort to integrate them
will be easier if the software platform is similar. Some industrial RTOS such as FreeRTOS provides an
integrated solution for FAT (file allocation table) file system, TCP/IP network stack, graphical user interface
(GUI) libraries, and USB stacks. FAT is used on the application with a mass storage component, such as
serial flash for the purpose of file writing, reading and deleting. GUI library is usually composed of a toolset
which allows the user to draw an image on the display, such as a straight line, a curve line, and a round shape
filled with blue color. This would simplify and speed up the product development and ensure the product is
delivered on time to the market. Table 6 lists the industrial RTOS with their integrated solutions.

At the same time, applying RTOS in the industry which is already certified by industrial standards
such as IEC 60730 (Safety Standard for Household Appliances) and IEC 60335 (Household and similar
electrical appliances-Safety) is also one of the main considerations [45]. Example of home appliances for
both of these standards are washing machines, refrigerators, power tools, air conditioning, and electric water
heater. The consideration is that certified embedded OS could save time and cost whereas the certification
process can be daunting. Table 6 lists some of the industrial RTOS which is certified with IEC 60730 and
IEC 60335.

Table 6. Embedded RTOS with supported featues (TCP/IP, File System, GUI, USB) and IEC 60730, IEC

60335 certified
RTOS TCP/IP FileSystem GUI USB IEC 60730 IEC 60335 License Ref.
FreeRTOS Yes Yes - - - - MIT [46]
UC/OS-111 Yes Yes Yes Yes - - Proprietary [39]
eCos Yes - - Yes - - GNU GPL [47]
embOS Yes Yes Yes Yes - - Proprietary [40]
Nucleus RTOS Yes Yes Yes Yes - - Proprietary [48]
ThreadX - - - - Yes Yes Proprietary [36]

Besides that, the huge selection of portable microcontroller is also one of the major considerations
when it comes to RTOS selection. Table 7 lists ported microcontrollers with pC/OS-I1l and FreeRTOS
RTOS solution. The more variety of microcontrollers ported to a particular embedded OS solution, the more
choices it is when it comes to changing the microcontroller. The effort to port the RTOS to a new
microcontroller can be saved. For example, suppose a product uses Infineon XMC1000 ARM Cortex-based
microcontroller with FreeRTOS as the software platform. When it comes to changing the microcontroller in
the future maybe due to cost effectiveness, there is a massive selection of FreeRTOS ported microcontroller
to choose from as shown in Table 7.

As a summary, the dependency among application complexity and memory footprint is shown in
Figure 12. It is divided into four quadrants. Quadrant 1 represents the scenario when the RTOS is being
deployed in low complexity application. This will lead to higher demand on memory footprint and reduce
cost-effectiveness. The higher the memory footprint is, the less the cost-effectiveness will be. For example, the
price for STM32F103T4 microcontroller (16 kBytes ROM, 6 kBytes of RAM) is USD 1.7325 [49], while the price
for the same family microcontroller STM32F103TB (128 kBytes ROM, 20 kBytes of RAM) is USD 2.3581 [50].
In contrast, development time could be reduced if the selected RTOS carry the needed software solutions.

Bulletin of Electr Eng & Inf, Vol. 10, No. 3, June 2021 : 1687 — 1700

Bulletin of Electr Eng & Inf

ISSN: 2302-9285 a

1697

Table 7. Ported microcontrollers with uC/OSIII and FreeRTOS RTOS solution

MCU Maker

UC/OS-111 Ported Microcontroller [51]

FreeRTOS Ported Microcontroller [52]

Altera
Analog Devices
ARM

ATMEL

Cypress

EnSilica
Imagination/MIPS
Infineon
Microchip
Microsemi

Microsoft
NXP

Renesas

Silicon Labs

ST
Microelectronics
Texas Instruments

Xilinx
Cadence Tensilica

Cortus
Spansion

Nios I, SoC FPGA (Cortex-A)

Blackfin, ADSP-CM4xx (Cortex-M)

ARM7, ARM9, ARM11, Cortex-A5, Cortex-A7, Cortex-A8,
Cortex-A9, Cortex-Al5, Cortex-Al7, Cortex-A53, Cortex-
Ab57, Cortex-R4, Cortex-R5, Cortex-R7, Cortex-MO0, Cortex-
M1, Cortex-M3, Cortex-M4(F), Cortex-M7

AVR, AVR32, SAM3, SAM4, SAM7, SAM9, SAMA5
(ARM Cortex-based)

PSoC 4, PSoC 5 (Cortex-M)
eSi-RISC
M14K

XMC4000 (Cortex-M)

PIC24, PIC32

SmartFusion2 (Cortex-M)

Win32

ColdFire, HCS12, i.MX, Kinetis (Cortex-M), LPC (Cortex-
M), LPC (ARM7 / ARM9), MPC5xxx, MPC8xxx, VFxxx
(Cortex-A & Cortex-M)

H8S, 78KO0R, R32C, RL78, RX100, RX200, RX600, RX700,
RZ/A (Cortex-A), RZ/T1 (Cortex-R & Cortex-M), R-IN32
(Cortex-M), SuperH-2A, V850E/2/S

Gecko (Cortex-M)

STM32F (Cortex-M), STM32L (Cortex-M), STR9

C28x, MSP430 (Cortex-M), MSP432 (Cortex-M), Hercules
RM (Cortex-R), Hercules TMS570 (Cortex-R)

MicroBlaze, Zyng-7000 (Cortex-A), Zynq Ultrascale+
MPSoC (Cortex-A & Cortex-R)

Nios II, Cyclone VV SoC (ARM Cortex-A9)

AVR, AVR32, ARM Cortex-based
(ATSAMD20, SAMV7, SAME7, AT91SAM4,
ATI91SAM3, ATSAMAS, ATI1SAMTS,
AT91SAM7X, AT91SAM9)

PSoC 5 (Cortex-M)

24 K, 34 K,74 K,;1004 K,1074 K, M4 K, M14 K,
microAptiv, interAptiv, proAptiv, M5100,
M5150, M6200, M6250, P5600

TriCore, ARM Cortex-based (XMC1000,
XMC4000)

PIC18, PIC24, PIC32, MEC14xx, CEC13xXx,
CEC17xx, MEC17xx, MEC51xx (ARM Cortex-
M4F)

SmartFusion A2F, SmartFusion2 M2S

ColdFire, HCS12, i.MX, Kinetis (Cortex-M),
LPC (Cortex-M), LPC (ARM7)

H8S, 78KOR, V850ES, RL78, RX100, RX200,
RX600, RX700, RZ/A (Cortex-A), RZ/T
(Cortex-R & Cortex-M), SuperH-2A,

Gecko (Cortex-M), EFM32G890F128, Cygnal
8051

STM32F (Cortex-M), STR7, STR9

SimpleLink loT, MSP430 (Cortex-M), MSP432
(Cortex-M), Stellaris (Cortex-M), Hercules
Safety

MicroBlaze , Zynq, Zynq UltraScale MPSoC,
PowerPC 405, PowerPC 440

Xtensa Processors

Cortus APS3

FM3 ARM Cortex-M3, MB91460, MB96340

1 Simple Application

3 Complex Application

RTOS with integrated
software modules

RTOS with integrated
software modules

2 Simple Application

2 | Super Loop / Cooperatiave
< |Sup p / Cooperatiav Cooperatiave scheduler
scheduler

Complex Application

Application Complexity

Figure 12. Application complexity versus memory footprint

Quadrant 2 represent the scenario where the super loop or cooperative scheduler is deployed in low
complexity application. In principle, the complexity of application in this quadrant is lower than quadrant 1.
The microcontroller with lower complexity, such as an 8-bit or 16-bit microcontroller [50], could be used in
this scenario as the memory resources that the schedulers occupied very small and could be ignored. In this
perspective, quadrant 2 will have the highest cost-effectiveness among all quadrants. For example, the price
for STM8S003K3 microcontroller (8 kBytes ROM, 1 kBytes of RAM) is USD 0.4242 [53]. Quadrant 3
represents the scenario where deterministic behavior is required and development efforts could be reduced
with RTOS deployment in the high complexity application. The main advantage is the availability of
integrated software solutions such as FAT, GUI, and TCP/IP network stacks. For the complex application
with no third-party software solutions available, quadrant 4 will fit in. Thus, the cooperative scheduler could
handle the complexity with the tasks being grouped and controlled in time slots.

Embedded operating system and industrial applications: a review (Yew Ho Hee)

1698 O ISSN: 2302-9285

4. CONCLUSION

Each embedded OS approach has their strongpoints and weaknesses. Super loop and cooperative
scheduler are small in memory footprint but less deterministic, and in contrast, RTOS is naturally
deterministic but require more memory. Selecting the right embedded OS for an application will depend upon
a lot of factors. At the norm, the more complex the application is, the higher the complexity of embedded OS.
This might not be always true when external elements such as cost and quantity are factored in. In this case,
super loop and cooperative scheduler with a naturally small memory footprint will be preferred as they could
fit into smaller microcontrollers, which lead to higher cost-effectiveness. Another factor will be the product's
requirements to fulfill the compliance of regulated standards such as OSEK/VDK, MISRA C, ISO 26262 in
the automotive industry, and IEC 62304 in the medical industry. The certified embedded OS will help save
cost and time needed to validate the OS part in software. Variety of supported features such as network
protocols, GUI, USB, file system for loT and the consumer electronics industry is also an important factor.
Choosing the right embedded OS helps to simplify the integration of complex software modules.

ACKNOWLEDGEMENTS
This work is supported by the Universiti Sains Malaysia RUI Grant (PELECT/8014049).

REFERENCES

[1] D. Chalagulla, J. Jayateertha, T. Giri and V. Sailaja, "Gesture Controlled Bomb Diffusing Mobile Robot," 2018
Second International Conference on Intelligent Computing and Control Systems (ICICCS), 2018, pp. 1-5, doi:
10.1109/ICCONS.2018.8662838.

[2] M. Petrvalsky, M. Drutarovsky and M. Varchola, "Differential power analysis attack on ARM based AES
implementation without explicit synchronization," 2014 24th International Conference Radioelektronika, 2014, pp.
1-4, doi: 10.1109/Radioelek.2014.6828434.

[3] S. Fischmeister and P. Lam, "Time-Aware Instrumentation of Embedded Software," in IEEE Transactions on
Industrial Informatics, vol. 6, no. 4, pp. 652-663, Nov. 2010, doi: 10.1109/T11.2010.2068304.

[4] K. W. Batcher and R. A. Walker, "Interrupt Triggered Software Prefetching for Embedded CPU Instruction
Cache," 12th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'06), 2006, pp. 91-
102, doi: 10.1109/RTAS.2006.24.

[5] Nahas, M., “Implementation of highly-predictable time-triggered cooperative scheduler using simple super loop
architecture,” International Journal of Electrical & Computer Sciences, vol. 11, no. 4, pp. 33-38, 2011.

[6] M. J. Pont, S. Kurian, H. Wang, & T. Phatrapornnant, “Selecting an appropriate scheduler for use with time-
triggered embedded systems,” Embedded Systems Laboratory, University of Leicester, pp. 1-24, 2007.

[7]1 S.Kurian &, M. J. Pont, “The maintenance and evolution of resource-constrained embedded systems created using
design patterns,” Journal of Systems and Software, vol. 80, no. 1, pp. 32-41, 2017.

[8] P. Hambarde, R. Varma, & S. Jha, “The survey of real time operating system: RTOS,” 2014 International
Conference on Electronic Systems, Signal Processing and Computing Technologies, 2014, pp. 34-39, doi:
10.1109/ICESC.2014.15

[9] Luis Fernando Friedrich, & Mario A. R. Dantas, “A Review of Operating System Infrastructure for Real-Time
Embedded Software,” Journal of Communication and Computer, vol. 12, no. 6, pp. 273-285, 2015, doi:
10.17265/1548-7709/2015.06.001.

[10] M. A. Mohammed, M. AbdulMajid, B. A. Mustafa and R. F. Ghani, "Queueing theory study of round robin versus
priority dynamic quantum time round robin scheduling algorithms,” 2015 4th International Conference on Software
Engineering and Computer Systems (ICSECS), 2015, pp. 189-194, doi: 10.1109/ICSECS.2015.7333108.

[11] X. Guan, Q. Xing and L. Feng, "Implementation of embedded system platform based on pC/OS-Il and S3C44B0X
microprocessor,” 2011 International Conference on Mechatronic Science, Electric Engineering and Computer
(MEC), 2011, pp. 2205-2208, doi: 10.1109/MEC.2011.6025929.

[12] Clark, G. (2014). The industrial revolution. In Handbook of economic growth, vol. 2, pp. 217-262. Elsevier.

[13] Ken Hu, “Rethinking The Internet Of Things,” VOIZ ASIA, [Online]. Available: https://voiz.asia/en/33760.
[Accessed: 12-August-2019].

[14] A. Omer, M. K. Ishak, M. K. L. Bhatti, “Adaptive clear channel assessment (A-CCA): Energy efficient method to
improve wireless sensor networks (WSNs) operations,” AEU-International Journal of Electronics and
Communications, vol. 131, 2021, Art. no. 153603, doi: 10.1016/j.aeue.2020.153603.

[15] O. Hahm, E. Baccelli, H. Petersen and N. Tsiftes, “Operating Systems for Low-End Devices in the Internet of
Things: A Survey,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 720-734, 2016, doi:
10.1109/J10T.2015.2505901.

[16] F. Javed, M. K. Afzal, M. Sharif and B. Kim, "Internet of Things (IoTs) Operating Systems Support, Networking
Technologies, Applications, and Challenges: A Comparative Review,” IEEE Communications Surveys Tutorials,
vol. 20, no. 3, pp. 2062-2100, 2018, doi: 10.1109/COMST.2018.2817685.

[17] C. Perera, C. H. Liu, S. Jayawardena and M. Chen, A Survey on Internet of Things From Industrial Market
Perspective,” IEEE Access, vol. 2, pp. 1660-1679, 2014, doi: 10.1109/ACCESS.2015.2389854.

Bulletin of Electr Eng & Inf, Vol. 10, No. 3, June 2021 : 1687 — 1700

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 1699

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]
[34]
[35]
[36]
[37]
(38]
[39]
[40]
[41]
[42]
[43]

[44]

[45]

S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain and K. Kwak, ”The Internet of Things for Health Care: A
Comprehensive Survey,” IEEE Access, vol. 3, pp. 678-708, 2015, doi: 10.1109/ACCESS.2015.2437951.

C. Sabri, L. Kriaa and S. L. Azzouz, "Comparison of loT Constrained Devices Operating Systems: A Survey,”
2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), Hammamet,
2017, pp. 369-375, doi: 10.1109/AICCSA.2017.187.

Al-Fugaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on
enabling technologies, protocols, and applications. IEEE communications surveys & tutorials, 17(4), 2347-2376.

O. Hahm, E. Baccelli, H. Petersen and N. Tsiftes, "Operating Systems for Low-End Devices in the Internet of
Things: A Survey,"” in IEEE Internet of Things Journal, vol. 3, no. 5, pp. 720-734, Oct. 2016, doi:
10.1109/J10T.2015.2505901.

F. Javed, M. K. Afzal, M. Sharif and B. Kim, "Internet of Things (IoT) Operating Systems Support, Networking
Technologies, Applications, and Challenges: A Comparative Review," in IEEE Communications Surveys &
Tutorials, vol. 20, no. 3, pp. 2062-2100, thirdquarter 2018, doi: 10.1109/COMST.2018.2817685.

M. Silva, D. Cerdeira, S. Pinto and T. Gomes, "Operating Systems for Internet of Things Low-End Devices:
Analysis and Benchmarking," in IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10375-10383, Dec. 2019, doi:
10.1109/J10T.2019.2939008.

Zikria, Y.B.; Kim, S.W.; Hahm, O.; Afzal, M.K.; Aalsalem, M.Y., “Internet of Things (loT) Operating Systems
Management: Opportunities, Challenges, and Solution,” Sensors 2019, vol. 19, pp. 1793, doi:
https://doi.org/10.3390/s19081793

C. Adjih et al., "FIT IoT-LAB: A large scale open experimental 10T testbed,” 2015 IEEE 2nd World Forum on
Internet of Things (WF-10T), 2015, pp. 459-464, doi: 10.1109/WF-10T.2015.7389098.

D. D. Ward, "MISRA Standards for Automotive Software,” 2006 2" |IEE Conference on Automotive Electronics,
London, 2006, pp. 5-18.

F. Fabbrini, M. Fusani, G. Lami and E. Sivera, "Software Engineering in the European Automotive Industry:
Achievements and Challenges," 2008 32nd Annual IEEE International Computer Software and Applications
Conference, 2008, pp. 1039-1044, doi: 10.1109/COMPSAC.2008.140.

D. John, “OSEK/VDX history and structure,” IEE Seminar on OSEK/VDX Open Systems in Automotive Networks
(Ref. No. 1998/523), London, UK, 1998, pp. 2/1-2/14, doi: 10.1049/ic:19981073.

A. Zahir and P. Palmieri, "OSEK/VDX-operating systems for automotive applications,” IEE Seminar on
OSEK/VDX Open Systems in Automotive Networks (Ref.No. 1998/523), London, UK, 1998, pp. 4/1-418, doi:
10.1049/ic:19981075,

C. Tsai, K. Tsai and M. Hsu, "An implementation of the enhanced-CAN BUS network connection in CAR real-
time embedded software system,” 2012 12th International Conference on Control, Automation and Systems, 2012,
pp. 277-283.

P. O. Ridolfi, "Extension of the FreeOSEK RTOS for Asymmetric Multiprocessor Systems," 2016 IEEE Biennial
Congress of Argentina (ARGENCON), 2016, pp. 1-6, doi: 10.1109/ARGENCON.2016.7585243.

J. Axelsson, A. Kobetski, Z. Ni, S. Zhang and E. Johansson, "MOPED: A Mobile Open Platform for Experimental
Design of Cyber-Physical Systems," 2014 40th EUROMICRO Conference on Software Engineering and Advanced
Applications, 2014, pp. 423-430, doi: 10.1109/SEAA.2014.38.

F. C. Braescu, L. Ferariu and C. Lazar, "OSEK-based multiple controllers with schedule feasibility self-testing,"
SPEEDAM 2010, 2010, pp. 1237-1242, doi: 10.1109/SPEEDAM.2010.5542060.

F. C. Braescu, L. Ferariu and C. Lazar, "OSEK-based multiple controllers with schedule feasibility self-testing,"”
SPEEDAM 2010, 2010, pp. 1237-1242, doi: 10.1109/SPEEDAM.2010.5542060.

C. Dong and H. Zeng, "Minimizing stack memory for hard real-time applications on multicore platforms,” 2014
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014, pp. 1-6, doi:
10.7873/DATE.2014.041.

”RTXS3,” [Online]. Availabe: http:/mww2.keil.com/mdk5/cmsis/ rtx [Accessed: 28-Jan-2020].

”SafeRTOS,” [Online]. Availabe: https://www.highintegritysyst ems.com/safertos [Accessed: 18-Jan-2020].

Kabra, A., Karmakar, G., & Joseph, J., “ST to MISRA-C translator and proposed changes in IEC61131-3
standard,” International Journal of Information and Electronics Engineering, vol. 2, no. 4, p. 575, 2012.

P. Jordan, ”Standard TEC 62304 - Medical Device Software - Software Lifecycle Processes,” 2006 IET Seminar on
Software for Medical devices, London, 2006, pp. 41-47, doi: 10.1049/ic:20060141.

Nelson, R., ”Design through test technologies boost real-world intelligence,” EE-Evaluation Engineering, vol. 57,
no. 4, pp. 12-17, 2018.

Hobbs, C., “Embedded software development for safety-critical systems,” CRC Press, 2019.

J. A. Coy, J. H. Pfeiffer, Y. S. Krieger, J. -H. Mehrkens, K. Botzel and T. C. Lueth, "Mechatronic device for the
optimization of the DBS-electrode placement," 2016 6th IEEE International Conference on Biomedical Robotics
and Biomechatronics (BioRob), 2016, pp. 214-219, doi: 10.1109/BIOROB.2016.7523625.

Samek, M.," Practical UML statecharts in C/C++: event-driven programming for embedded systems,” CRC Press,
2018.

R. Le Moigne, O. Pasquier and J. -. Calvez, "A generic RTOS model for real-time systems simulation with
systemC," Proceedings Design, Automation and Test in Europe Conference and Exhibition, 2004, pp. 82-87 vol.3,
doi: 10.1109/DATE.2004.1269211.

D. Roman, “Introduction to IEC 60335-Household and similar electrical appliances-Safety,” 2015 IEEE
Symposium on Product Compliance Engineering (ISPCE), Chicago, IL, 2015, pp. 1-6, doi:
10.1109/ISPCE.2015.7138702.

Embedded operating system and industrial applications: a review (Yew Ho Hee)

1700 O ISSN: 2302-9285

[46] A. Musaddiq, Y. B. Zikria, O. Hahm, H. Yu, A. K. Bashir and S. W. Kim, "A Survey on Resource Management in
lIoT Operating Systems," in IEEE Access, vol. 6, pp. 8459-8482, 2018, doi: 10.1109/ACCESS.2018.2808324.

[47] Massa, A. J.,” Embedded software development with eCos,” Prentice Hall Professional, 2002.

[48] Pothuganti, K., Haile, A., & Pothuganti, S.” A Comparative Study of Real Time Operating Systems for Embedded
Systems,” International Journal of Innovative Research in Computer and Communication Engineering, vol. 4, no.
6, 2016.

[49] “STM32F103T4,” [Online]. Available: https://www.st.com/content/st com/en/products/microcontrollers/stm32-32-
bit-arm-cortex-mcus/stm32-mainstream-mcus/stm32f1-series/stm32f103/stm32f103t4.html [Accessed: 12-Feb-
2020].

[50] “STM32F103TB,” [Online]. Available: https://www.st.com/content/st com/en/products/microcontrollers/stm32-32-
bit-arm-cortex-mcus/stm32-mainstream-mcus/stm32f1-series/stm32f103/stm32f103th.html [Accessed: 12-Feb-
2020].

[51] uC/OS RTOS & Stacks, “Real-Time Kernels: MC/OS-II and pC/OS-IIL,” [Online]. Available:
https://www.micrium.com/ rtos/kernels. [Accessed: 12-Feb-2020].

[52] FreeRTOS, “FreeRTOS Ports,” [Online]. Available: https://www.freertos.org/ a00090.html. [Accessed: 12-Feb-
2020].

[53] “STMB8S003K3,” [Online]. Available: https://www.st.com/content/st com/en/products/microcontrollers/stm8-8-bit-
mcus/stm8s-series/stm8s-value-line/stm8s003k3.html [Accessed: 12-Feb-2020].

BIOGRAPHIES OF AUTHORS

Yew Ho Hee received the B.S degree in Electrical and Electronics engineering from Multimedia
University, Melaka, Malaysia, in 2004. He is currently pursuing the Master of Business
Administration (MBA) at Universiti Sains Malaysia, Penang, Malaysia. Since 2004, he had been
working as firmware engineer in consumer electronics, industrial tools and automotive product.
Currently, he is a feature responsible who lead a team of six members to realize the firmware
update over the air (FOTA) feature for instrument cluster. His research interests including
Internet of Things, network topology design and applications, scalability in software abstraction,
accelerometer applications, over the air firmware updatability (OTA), User Experience (UX),
and Real Time Operating System.

Mohamad Khairi Ishak received the B.Eng degree in Electrical and Electronics Engineering
from the International Islamic University Malaysia (IlUM), Malaysia, the MSc. in Embedded
System, from the University of Essex, United Kingdom and PhD from the University of Bristol,
United Kingdom. He is a member of IEEE and a registered graduate engineer with the Board of
Engineers Malaysia (BEM). Currently, he is a Senior Lecturer in Mechatronics Engineering at
School of Electrical and Electronic Engineering, Universiti Sains Malaysia (USM). His research
interests are Embedded System, Real-Time Control Communications and Internet of Things
(10T). Emphasis is given towards the development of theoretical and practical methods which
can be practically validated. Recently, significant research effort has been directed towards
important industrial issues of embedded networked control systems and IoT.

Mohd Shahrimie Mohd Asaari completed his PhD in Science (Physics) from Universiteit
Antwerpen, Belgium in 2019. He obtained Master of Science (Electrical and Electronics) from
Universiti Sains Malaysia in 2012 and Bachelor of Engineering Hons. (Electrical) from
Universiti Teknologi Mara in 2009. In his PhD research, he concentrates in plant-related study,
where the project aims for early stress detection in plants using the analysis of close-range
hyperspectral imaging. Currently he is a senior lecturer at School of Electrical and Electronics
Engineering, Universiti Sains Malaysia. His research interest includes Image processing,
Computer vision, Machine learning and Close-range hyperspectral imaging.

Mohamad Tarmizi Abu Seman has experience 17 years as a lecturer/senior lecturer at School
of Electrical and Electronic, Universiti Sains Malaysia (USM), Engineering Cmpus in
Mechanical and Mechatronic Engineering. He was graduated from UiTM (Degree), USM
(Master and PhD) in an area of Mechanical Engineering with focusing on Computational Fluids
Dynamic (CFD), Control, NDT, M&E, 10T, and Embedded System. He is also a Chairman of
Malaysian of Technical Doctorate Association (MTDA). Recently, he has supervised ongoing 2
PhD Student and 1 master student. He also has obtained a cumulative grant from a various sector
with a total amount of RM 220,000 from 2018 to 2021. He was awarded as a Professional
Engineer (Ir.) in a field of Mechanical Engineering (P119216) by the Board of Engineer
Malaysia (BEM) and IEM members (61958) in Mechanical from The Institution of Engineer
Malaysia (IEM).

Bulletin of Electr Eng & Inf, Vol. 10, No. 3, June 2021 : 1687 — 1700

