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The practice of data science, artificial intelligence (Al) in general, has
expanded greatly in terms of both theoretical and application domains. Many
existing and new problems have been tackled using different reasoning and
learning methods. These include the research subject, generally referred to as
education data mining (or EDM). Among many issues that have been studied
in this EMD community, student performance and achievement provide an
interesting, yet useful result to shaping effective learning style and academic
consultation. Specific to this work at Mae Fah Luang University, the pattern
of students’ graduation is determined based on their profile of performance in
different categories of courses. This course-group approach is picked up to
generalize the framework for various undergraduation programmes. In that, a
bi-level learning method is proposed in order to predict the length of study
before graduation. At the first tier, clustering is applied to derive major types
of performance profiles, for which classification models can be developed to

refine the prediction further. With the experiments on a real data collection,
this framework usually provides accurate predictive outcomes, using several
conventional classification techniques.

This is an open access article under the CC BY-SA license.

@O0

Corresponding Author:

Natthakan lam-On

Center of Excellence in Al and Emerging Technologies

School of Information Technology

Mae Fah Luang University, 333 Moo.1, Ta-sud, Muang District, Chiang Rai 57100, Thailand
Email: natthakan@mfu.ac.th

1. INTRODUCTION

Catching up the changing world, regarding technology advancement and life style, almost all
organizations have embraced tools and techniques to derive useful knowledge from a pool of transactional
data. This also applies to the context of higher education, where conventional and new sources of such a data
have an important role to play [1], [2]. These include a simple student grading profile that is normally
obtained from a university registration system, history of course enrollment, and student logs with online
learning sessions [3], [4]. To a university and alike education institutes, this has proven critical to maintain
competitive and meet expectations of young generation and the government. In particular to the study of [5],
the trend of applying data mining that is recently renewed to a general concept of data science, to various
educational data and problems keeps increasing over the years. With this methodology of educational data
mining (EDM) [6], [7], effective planning and decision making can well be improved by transferring a
goldmine of data specific to each university to working knowledge about student behavior, preferences of

Journal homepage: http://beei.org



22020 ISSN: 2302-9285

learning methods and materials, communication channels and other factors to their achievement. Examples of
past development include the prediction of student performance, recommendation systems for courses or a
personalized learning plan, determination of atypical learning patterns and causes [1], [8].

Drilling down to the topic of student performance or achievement, a number of previous studies
exploit newly customized and existing data mining models to commonly demonstrate the benefits of
identifying students at risks. Given this, a university may be able to act quickly or even prevent undesirable
events to take place, hence reducing the damage to both student and university. The work of [9] focuses on
inventing a predictive model that accurately categorize new students to different programmes of student
retention on campus. In addition, others [10]-[12] also propose models that determine groups of students with
distinct preferences. Such a division leads to appropriate policy and treatment being implemented to ensure
student retention. Similar to these, there are other investigations that make use of a range of data mining
methods to modeling student performance and dropout. These include supervised learning models like Naive
Bayes classifier [13] and decision tree [14], [15], with an unsupervised learning approach like k-means [16]
being an efficient alternative for a big set of data.

For Mae Fah Luang University (MFU) and other universities in Thailand, the problem of student
retention has gained a great deal of attention. It is due to the country moves closer to the aging society, with
the ratio between young and old population groups is geting smaller and smaller, hence less students will
pursue higher education. This is also motivated by initial attempts [17]-[21] that make use of basic
classification algorithms, and another set of studies by [8], [22] that explores both existing methods and their
extensions. According to [8], a new data transformation is introduced prior the usual classification process.
For that, the concept of consensus clustering [23]-[25] is adopted to transform an original data to the
corresponding matrix with sample-cluster-relation embedding. Instead of modeling student performance
solely as a classification problem, it might be feasible to include an unsupervised model like data clustering
to determine the obvious cases, before forwarding the rest to a more complex classifier. Of course, this makes
the training procedure more efficient with less samples. Besides, it might help to solve another difficulty of
class imbalance, which is rather common as the amount of at-risk students is often much smaller than that of
the other group. As such, this paper introduces a bi-level learning framework that first relates a new case to
one of the pre-defined clusters. Then, for a particular cluster that sees almost all of its members belonging to
one class, a pattern of student graduation can be justified right away. On the other hand, for a cluster with
low purity, the prediction is produced by the cluster-specific classifier.

The proposed framework is exploited to determine the graduation patterns, or whether a student
finishes the enrolled programme within a regular period of 4 years or else. This knowledge provides an
opportunity for students together with advisors to adjust the plan of courses, which may help the student to
perform better or graduate on time. This model is designed in such a way that it is applicable for different
programmes across schools at MFU. To be precise, courses are groups to categories that are common to all
students, thus generalizing the target learning model. For the current research, the framework is evaluated
with a real data collection, which covers students graduating in 2016. The rest of this paper is organized as
follows. Section 2 presents the research methodology of this study, including details of the data mining
process, investigate data collection, and the proposed framework of bi-level learning. After that, experiment
design, the corresponding results and discussion are provided in section 3. The paper is then concluded in
section 4 with a perspective of future research.

2. METHOD

This research follows those data mining or data science studies, especially those focusing on EDM
[81, [9], [20]. In particular, the target data is firstly identified, followed by the preparation stage that ensures
the readiness and quality of final data set. Having completed this, the bi-level learning framework can be
described, with respect to characteristics of the data under investigation. These issues are discussed in the
following sections.

2.1. Data acquisition and preparation

In order to obtain an effective framework, it is designed based on transactional data maintained in
the MFU registration system. Due to the concern of data privacy, the current project is to initially exploit
only academic records of those undergraduate students who graduated in 2016 (or 2559 in B.E.). This
population consists of 1,162 cases from 2 schools of management and information technology. The retrieval
of these is subjected to conditions that a selected sample has to complete the number of required courses for
three subject categories. These include general education course, specific required course, and free elective
course, respectively. Moreover, those belonging to students with a record of programme transfer or exchange
are excluded.
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Within the registration database, two important tables from which the target data is retrieved are
shown in Figure 1: ‘Student personal information’ and ‘Student enrollment information’. In the former, each
student is represented with personal identification number (ID), year of entry that specified in B.E., name of
school that administrates the enrolled programme, and graduation GPAX. The latter describes a number of
enrolled courses, course categories and the grades achieved. Given these, the target data can be obtained by
joining the aforementioned two tables by student IDs. Following that, the ‘Student data for analysis’ table in
Figure 1 can be generated by collapsing multiple rows of a single student (each representing one course) to
one record. For such a purpose, course names are ignored, whilst frequencies of different grades (i.e., A, B+,
B,C+ C, D+ D,F, P, S, U, V, and W) are accumulated. Note that three sets of grade frequencies are formed,
one for each course category. Table 1 represents details of these sets of grade frequencies that are considered
attributes or features of the intermediate data.

Student ID. | Academic year School GPAX| |Student ID. subjects studied Course ... |Grades

523XXXXXXX 2552 School of Information Technology | 2.00 | [523xxxxxxx [Introduction to Software Engineering |Specific Requirement | ... D

54 3XXXXXXX 2554 School of Information Technology | 2.10 | |523xxxxxxx [Database Systems Specific Requirement | ... B

55.3XXXXXXX 2555 School of Information Technology | 2.40 | [523xxxxxxx Practical Ceramic Free Elective B+
Student personal information Student enrollment information

+

ID YEAR| Al | B1 |BB1| ... | A2 | B2 [BB2| ... | A3 | B3 |BB3| ... |W3
2
0
1

523xx00xxxx [ 2552 | 0 | 3 | 4 | ... |3 |1 |2]..]0]1]1
SA3xxxxxxx [ 2554 | 2 | 4 |6 | ... |1 |1 |0 |..]0]|2]?2
553xxxxxxx [ 25551 3 | 7 |3 | .. |1 [0 |0 |..]0|1]0

Student data for analysis

Figure 1. Initial target data (‘Student personal information” and ‘Student enrollment information’ tables) and
the initial data preparation procedure that produces the final data set (i.e., ‘Student data for analysis’ table)

Having obtained this intermediate data set, the following pre-processing steps are needed to create
the final data set, which will be analyzed using the proposed framework.
(i) Each grade frequency such as Al, A2 and A3 in Table 1 is normalized such that its value domain is
transformed to be within the range of [0, 1]. This is to ensure the absence of biases among different attributes
in the analyzing process (i.e., these data attributes are equally important). Furthermore, it helps to overcome
the problem that different programmes may consist of different number of courses in those three categories.
As a result, the normalization of each grade frequency f. in the category x is defined as fyi», which can be
estimated by the following.

fr = L — (1)

Yvjex fxj

(ii) Then, the attribute ID is removed in order to protect the privacy of personal information.

(iii) At last, the attribute YEAR that represents the entry year in B.E., is transformed to a number of year each
student has spent in the programme before graduation. Note that those students that graduate in year y
actually started the programme in year y - 3 or before that. Given this knowledge, the new value yx of YEAR
attribute for a student k (where k=1, ..., N; N=1,162) can be calculated from the entry year yi as follows,
where y,.qq4 is the year of graduation and set to 2559 in B.E. (or 2016 as mentioned earlier) for the present
study. Note that other data batches may be available for future studies, where can be yg,.q.q can be 2559,
2560, 2561 and so on.

Yi* = Ygraa — Yr T 1 )
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After these steps of data preparation, the final data set is composed of N=1,162 samples, and D=40
features or attributes. These can be summarized as follows. In that, 911 samples belong to School of
management, and the other 251 cases represent students from School of information technology.

— 13 normalize grade frequencies in the category of specific required courses; ds, ..., diz in [0, 1].

— 13 normalize grade frequencies in the category of free elective courses; dig, ..., d2s in [0, 1].

— 13 normalize grade frequencies in the category of general education courses; dy7, ..., dsg in [0, 1].

—  YEAR that is now the number of years before graduation; ds in {4, 5, 6, 7}. It is noteworthy that the
minimum numebr of years anyone at MFU has to be in a programme is 4 years. Also, it is possible for a
student to spend up to 7 years in a specific programme before graduation.

Table 1. Description of student information and different grading frequencies (i.e., the intermediate data)

No Attribute Name Description

1 ID Student identification number

2 YEAR Year of entry (in B.E.)

3 Al Number of grade A obtained from specific required courses
4 BB1 Number of grade B+ obtained from specific required courses
5 B1 Number of grade B obtained from specific required courses
6 CcC1 Number of grade C+ obtained from specific required courses
7 C1 Number of grade C obtained from specific required courses
8 DD1 Number of grade D+ obtained from specific required courses
9 D1 Number of grade D obtained from specific required courses
10 F1 Number of grade F obtained from specific required courses
11 P1 Number of grade P obtained from specific required courses
12 S1 Number of grade S obtained from specific required courses
13 Ul Number of grade U obtained from specific required courses
14 V1 Number of grade V obtained from specific required courses
15 w1 Number of grade W obtained from specific required courses
16 A2 Number of grade A obtained from free elective courses

17 BB2 Number of grade B+ obtained from free elective courses

18 B2 Number of grade B obtained from free elective courses

19 cec2 Number of grade C+ obtained from free elective courses

20 Cc2 Number of grade C obtained from free elective courses

21 DD2 Number of grade D+ obtained from free elective courses

22 D2 Number of grade D obtained from free elective courses

23 F2 Number of grade F obtained from free elective courses

24 P2 Number of grade P obtained from free elective courses

25 S2 Number of grade S obtained from free elective courses

26 u2 Number of grade U obtained from free elective courses

27 V2 Number of grade V obtained from free elective courses

28 W2 Number of grade W obtained from free elective courses

29 A3 Number of grade A obtained from general education courses
30 BB3 Number of grade B+ obtained from general education courses
31 B3 Number of grade B obtained from general education courses
32 Cc3 Number of grade C+ obtained from general education courses
33 C3 Number of grade C obtained from general education courses
34 DD3 Number of grade D+ obtained from general education courses
35 D3 Number of grade D obtained from general education courses
36 F3 Number of grade F obtained from general education courses
37 P3 Number of grade P obtained from general education courses
38 S3 Number of grade S obtained from general education courses
39 U3 Number of grade U obtained from general education courses
40 V3 Number of grade V obtained from general education courses
41 W3 Number of grade W obtained from general education courses

2.2. Model development

This section presents the process of model development, including cluster analysis that is conducted
initially to observe the grouping structure within the final data set, and details of the proposed bi-level model
with its evaluation being reported in section 3.

2.2.1. Initial cluster analysis

At first, it is trivial to observe the structure of data whether it is appropriate to develop the desired
bi-level learning framework. In other words, after applying a clustering algorithm to the data set, there should
be a cluster that is pure or almost pure (i.e., almost all samples in a cluster belong to the same class). Besides,
there also are other clusters of the same clustering result that are nor pure, and needed additional classifiers to
justify an appropriate class of their members. The final data set X is further divided into two subsets of school
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specific samples: X; for School of management and X, for School of information technology. To accomplish
this, k-means clustering algorithm is applied to the final data set X4 for M times, for a particular number of
clusters k. These multiple trials are required to draw a reliable conclusion from a non-deterministic model
like k-means. For each run p=1 ... M, the result C; is assessed with two well-known validity indices of DB
and Dunn (see [5] and [6] for more details). For each C, there will be two measurements of DBY, and
Dunn¥,. Then, the averages across M runs can be estimated and presented as DB*,« and Dunn*y», respectively.

k _ Zp=1,.MDB§
DBp* =7 "
k _ 2p:1,,,,,MDunn’z§
Dunny,. = St —F “

The aforementioned procedure is repeated for a range of different k values, i.e., kiin {2, 3, ..., Kmax}-
As such, the optimal k is selected from this range as the value that provides the best values of DB« and
Dunny«. To accomplish this, a rank-based approach is exploited such that the parameter k with the minimum
overall ranking score (RS¥) is preferred. As a low DB measure indicates a good clustering, DBI’;* for diffent k

values are ranked from minimum to maxmum. Given this ranked list, the k-specific ranking score RSk, can
be determined, where the first in this list is assigned with 1 and the last with k,,,,-1. In case of a tie, the
average of ranking score is given to related parties. Likewise, the k-specific ranking score RSX,,,.., can also be
estimated from the ranked list, in which high Dunn’;* measures appear in the front as they represent better
clustering than those with lower Dunn values. Provided these, the overall ranking score specific to k can be
simply calculated as follows. After that, the optimal k value is identified with the minimum RS* k €

2, kmax )
RSk = RSK, + RSK,.. ®)

With knax being 10, clustering results with two clusters (or k=2) proves to be better than those using
other k values. Figures 2 and 3, for School of management and School of information technology, illustrate
the two clusters that are obtained from the trial with the best quality measures. According to Figure 2, Cluster
1 is almost pure with 444 out of 447 samples (i.e., 99%) having the entry year of 2556 (in B.E.) or YEAR is
4, while only 1% spends 5 years before graduation. However, with Cluster 0, it is less pure with the majority
of 85% finishes on time, or YEAR=4. The other 15% is a mixture between samples with YEAR values of 5
(13%), 6 (1%), and 7 (1%). Similar observations of the two clusters are also obtained with samples of School
of information technology, see Figure 3 for more details. Henceforth, a clustering process may well be used
to provide an accurate prediction model for specific clusters, such as those Cluster 1 in both cases.
Nonetheless, a classifier is also required in addition to the initial clustering for some other clusters, for
instance Cluster 0 in Figures 2 and 3. This finding leads to the proposed framework that will be explained
next.

School of Management

Cluster 0 Cluster 1

319
X % i 3,1%
3,1%_ 1%

444, 99% _

Figure 2. The best clustering result with k=2, for samples belonging to school of management
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School of Information Technology

Cluster 0 Cluster 1

Figure 3. The best clustering result with k=2, for samples belonging to school of information technology

2.2.2. Proposed model

This section provides details of the proposed framework of bi-level learning, in which both types of
unsupervised and supervised learning approaches are systematically combined to produce an accurate, yet
efficient learning and prediction processes. The steps taken to generate or train a model are given as:
Step 1: For a given specific case g (e.g., school), suppose that Xqrain and Xgest are training and test data,
respectively. The process of model generation will make use of only the former, while the latter is used to
assess the quality of the resulting model. With a clustering @, the procedure explained in section 2.2.1 is
conducted on Xgrain to find the optimal number of clusters. Then, select among M alternative of clustering
results with that best k, to represent the knowledge model in the first level. Note that for this stage, the YEAR
feature is left out such that groups of students can be formulated based solely on grade achievement. This
problem is designed as a binary classification, with two classes of A (YEAR=4) and B (YEAR > 4).
Step 2: For each cluster ¢ in the clustering C* from Step 1 (where t=1 ... k), its centroids z¥ is used as a
reference for a new sample in the test or prediction phase. Please refer to [20] for details of estimating a
centroid from cluster members.
Step 3: Again, for each cluster, find the percentage of majority class among samples in that cluster. The
analysis process stops only at this clustering level, if that percentage is greater than or equal to « (i.e., a
predefined value of minimum percentage for a pure cluster). As a result, this cluster represents that majority
class, which is a prediction of a new instance that is similar to the corresponding cluster centroid. Otherwise,
a classifier is to be built using samples of this specific cluster (see Step 4).
Step 4: When one cluster is not pure up to the expected level of «, samples in that cluster will be used to train
a classifier using the classification algorithm f. Please note that a conventional feature-based classification
like a Naive Bayes model can be used here. Please see section 3.1 for all methods that are employed in the
present investigation.

After going through those steps explained above, the resulting bi-level model can be exploited to
predict a class of a new instance in Xqest as follows.
Level 1: For a sample g in the test data Xq,st, find the optimal centroid z4 amongst k alternatives that provides
the minimum distance to the sample g. This is defined by the following equation. Note that d(.) is a distance
function, with Euclidean being used in the current research.

min d(g, z9) (6)

Z ,t=1..k

If the optimal centroid z represents a cluster with the final class prediction (i.e., without additional
classifier), the predicted class is simply provided. Otherwise, classify the sample g using the cluster-specific
classifier in Level 2.

Level 2: Given the sample g, produce a class prediction using the classifier specifically developed for the
cluster c% (whose centroid is z% that is identified earlier in Level 1).

3. RESULTS AND DISCUSSION

In this section, the design of empirical study is explained, which includes the investigated data and
evaluation approach, settings of algorithm parameters, and compared methods. Furthermore, results and
important findings are discussed in such a way to amend useful information and guideline.
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3.1. Experimental design
This experiment makes use of the final data set of 1,162 samples, which is described in section 2.1.

Two cases are formed regarding two schools where these samples belong to: i) School of management with

911 samples, and School of information technology with the other 251. Other settings are listed as:

a. k-means is used as the clustering algorithm @ in bi-level learning framework, with M=10 for the
number of trials to be investigated for a particular number of cluster k. Also, note that k is selected from
a range of 2 to Kmax, where Knax=10.

b. The minimum level of cluster purity is determined by the proportion of majority class, which is
specified by the variable a=90%.

c.  Four algorithms are examined as the choice to create the classifier g in Level 2 of the proposed model.
These include: Naive Bayes (using Gaussian distribution for numerical features), K-nearest neighbors or
KNN (using K € {1, 3} as to generalize the findings), Decision Tree (with the maximum depth=10), and
Random Forest (with the size of forest=20).

d.  10-fold cross validation is exploited as the evaluation approach here, such that each sample is a member
of test data once. As such, a confusion matrix is produced for this binary classification problem.

e. Inaddition, there are two compared methods that are considered as baseline counterparts of the bi-level
learning framework.

f.  Clustering-only prediction, i.e., only Levell in the proposed model is implemented.

Classification-only prediction, where cluster analysis is not included and a classifier is generated from
the entire training data set. The same collection of four classification algorithms specified above is also
examined in this specific use case.

3.2. Experimental results and discussion

Based on the design described in the previous section, Table 2 shows the evaluation results of 6
different models with the case of School of management. Both overall as well as class-specific accuracies €
[0,100] are exploited here to compare predictive performance of different methods. For instance, the
accuracy of Class A is estimated as: the number of Class A samples that are predicted correctly devided by
the total number of Class A samples. In this table, all variants of the bi-level model have higher overall
accuracies than that of the clustering-only counterpart. In addition, Random Forest (RF) obtains the highest
overall accuracy of 93.96%. With respect to the accuracy of Class A, all the models are able to generate
exceptional performance, with RF is the best again. However, for Class B, Naive Bayes (NB) achieves the
highest accuracy of 79.71%, with RF obtains only at 42.03%. Unfortunately, the clustering-only or Levell
model is not able to identify any sample of Class B, with resulting in an accuracy of 0%. Another observation
is with the KNN model performing better with K=1 than a bigger neighbor set of K=3.

Table 2. Evaluation results with different models, for the case of School of management

Model Confusion Matri>_< _ Class specific Overall
: A B Classified as accuracy acuuracy
Levell (Clustering only) 839 702 g\ 902.-010(3;? 92.10%
i . 0,
Bi-level (Naive Bayes) 71942 gg g\ 333? 02 92.97%
i - 0,
Bf level (KNN, K=1) 83185 gz Q Zi:;g zf; 92.86%
Bf-level (KNI-\I,- K=3) 51110 :z%g g Zgég 32 91.99%
Bf-level (Decision Tree) 83199 :238 g\ Z;i; 22‘: 93.19%
Bi-level (Random Forest) 51207 ;g g\ Zg(z)goﬁ; 93.96%

In addition to the results reported in Table 2, Figure 4 depicts the comparison of accuracies specific
to Class A, which are achieved by different variations of the bi-level framework (shown in Table 2) and four
simple classifiers (NB, KNN, DT, and RF are trained with the whole training set). Note that for KNN, results
with only K=1 are reported since they demonstrate the best performance among different K values.
According to this, all of the four bi-level variations perform better than their corresponding baselines. For
instance, the bi-level model implementing RF acquires the accuracy of 98.22%, almost 2% higher than the
score achieved by a simple RF classifier. The largest improvement is witnessed with the case of NB, with the
bi-level version reaches 94.06% and a simple NB is only at 88.10%. Likewise, Figure 5 shows a similar set
of results for the Class-B prediction. This figure suggests that the bi-level framework usually outperforms the
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corresponding simple classification models. In particular, NB obtains the highest accuracy of 79.71%, while
the lowest of 42.03% is seen with RF. However, this is still a significant improvement from using a simple
RF that is accurate at only 27.55%.

Accuracy (Class A) W Bi-level Accuracy (Class B) H Bj-level

100.00% 1 98.22% Simple Classifier 90.00% 7
96.79% 7.27% 79.71%

94.94% 96.96% 80.00% -
 94.06% 93.92%
95.00% ]
£0.00% - 57.97%
90.00% 1 88.10%
S0.00% W% g3as% 403
85.00% A 40,00% -
| 30.43% 28.99%
Nl 27.55%
80.00% A . . : 000k . . |
NB KNN DT RF NB KNN o1 RE

Figure 4. Class-A accuracies obtained by bi-level and Figure 5. Class-B accuracies obtained by bi-level

Simple Classifier

basic classifiers, categorized by classification and basic classifiers, categorized by classification
algorithm exploited for the training process. Note that algorithm exploited for the training process. Note
the results with KNN are obtained using K=1 that the results with KNN are obtained using K=1

Similar to Table 2, Table 3 shows details of the evaluation results with the data belonging to School
of information technology. For the overall accuracy, the bi-level (NB) and the clustering-only model obtain
the highest and the lowest scores, respectively. The bi-level (RF) is the most effective for Class-A
classification at 97.17%, while the bi-level (NB) proves to be exceptional for Class B. It reaches a high value
of 92.31%. These results lead to a conclusion that the proposed framework is more accurate than using only
the clustering results to guide prediction. Again, the KNN model with K=1 performs better than the other
using K=3. Besides these, Figures 6 and 7 compare the accuracies obtained by bi-level variations and basic
classifiers for Class A and Class B, respectively. Like the previous case, trends found with School of
management also appear here with students from School of information technology. So, the findings that the
proposed framework is better than simple classifiers and a clustering-only prediction are confirmed by these
two set of results. In fact, it is generalized and applicable across different schools.

Table 3. Evaluation results with different models, for the case of School of information technology

Model Confusion Matrix _ Class specific Overall

. A B Classified as accuracy acuuracy

Levell (Clustering only) 289 402 g 80:3.6207"jf 83.27%
i . 0,

Bf level (Naive Bayes) 129 ég g 322132 93.63%

Bf-level (KNN, K=1) 12907 g g Zgg; 22 86.06%

Bi-level (KNN, K=3) 12935 g g Zi:gg 02 84.06%
i P 0,

Bf level (Decision Tree) 11927 ;3 g 232532 89.24%

Bi-level (Random Forest) 21036 266 g 2(75(13; 02‘: 92.43%

In order to digest those results further, Figure 8 reveals an important finding regarding the problem
of class imbalance. According to Tables 2 and 3, the accuracies reported for Class A are usually better those
of Class B. This is pretty much due to the uneven cardinality of samples belonging to these binary classes. In
fact, based on the original class distribution for School of management shown in Figure 7, the proportion of
instances of Class A is 92.10% and only 7.90% of the other. It is slightly better for School of information
technology, with the ratios being 83.27% and 16.73%. It can be summarized from Figures 6 and 7 that most
models included in this empirical study exhibit better performance with Class B in the case of School of
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information technology, compared to the other case. The level of imbalance between classes in the former is
less than the latter, which may well explain that observation. Another point worth noted here is that the bi-
level framework can ease the imbalance problem with higher proportions of Class-B samples are included in
the stage of classification modeling, see Figure 8 for details. Hence, bi-level variants are more accurate than
their corresponding baseline counterparts, i.e., simple classifiers.

Accuracy (Class A) M Bi-level Accuracy (Class B) H Bi-level
100.00% A H 100.00% A 1
97.17% Simple Clas 92.31% Simple Clas
90.00% -
95.00% 1| 93.87% 92.92% 92.92% 94.64% 80.00% - 76.92%
91.07% 70.00% 69.23% 66.67%
90.00% - 89.29% 89.29%
60.00% 1 53.85% 58.97%
48.72%
50.00% A
85.00% -
40.00% A I35.4G%
80.00% - T T T " 30.00% - T T T 1
NB KNN DT RF NB KNN bt RF
Figure 6. Class-A accuracies obtained by bi-level and ~ Figure 7. Class-B accuracies obtained by bi-level
basic classifiers, categorized by classification and basic classifiers, categorized by classification
algorithm exploited for the training process. Note that ~ algorithm exploited for the training process. Note
the results with KNN are obtained using K=1 that the results with KNN are obtained using K=1
Proportion School of Management School of IT
100.00% 1 92.10% M Class A
85.13%
83.27%
80.00% 1 M (Class B
60.00% -
40.00% 7
20.00%
0.00% -

Bi-level Original Bi-level Original

Figure 8. Comparison of class distributions between the entire original data (without clustering process) and
those samples belonging to the cluster going through the second level of bi-level framework

4. CONCLUSION

This paper has presented an original work on the application of bi-level learning framework to
determine patterns of student graduation. It is designed around a real collection of student enrollment and
personal information. The proposed framework is divided into two tiers, with the initial applying a clustering
technique to obtain clusters of student samples. A cluster of high quality is used as a reference for prediction,
whereas those with the purity below a user-defined threshold are further analyzed using a choice of classifier.
Evaluated on a data set specific to Mae Fah Luang University, the bi-level variations usually perform better
than adopting simple classifiers to the whole data, or relying on the clustering result alone. This is due to the
ability to solve the class imbalance to a certain extent. In fact, the application of Naive Bayes (NB) and
Random Forest (RF) in the bi-level learning framework has proven more effective than other alternatives in
this empirical study. While the former is the most accurate for Class B, the latter is exceptional for Claass A.

Despite such a positive finding, there are a few issues that might lead to future works. In addition to
the methodology of bi-level learning model, an oversampling or undersampling technique may well be
exploited to resolve the problem of class imbalance further. Also, the concept of classifier ensemble may be
useful to aggregate predictions made by different classifiers, which are deployed at the second level of
proposed framework. Another direction is with the use of consensus clustering and recent variants to provide
an accurate clustering in the intial layer of proposed model.
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