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Automatic  detection of neuromuscular disorders performed using
electromyography (EMG) has become an interesting domain for many
researchers. In this paper, we present an approach to evaluate and classify
the non-stationary EMG signals based on discrete wavelet transform (DWT).
Most often researches did not consider the effect of DWT factors on
the performance of EMG signals classification. This problem is still
an interesting unsolved challenge. However, the selection of appropriate
mother wavelet and related level decomposition is an essential issue that should
be addressed in DWT-based EMG signals classification. The proposed method
consists of decomposing a raw EMG signal into different sub-bands. Several
statistical features were extracted from each sub-band and six wavelet families

Discrete wavelet transform
Electromyography
Support vector machine

were investigated. The feature vector was used as inputs to support
vector machine (SVM) classifier for the diagnosis of neuromuscular disorders.
The obtained results achieve satisfactory performances with optimal
DWT factors using 10-fold cross-validation. From the classification
performances, it was found that sym14 is the most suitable mother wavelet at
the 8th optimal wavelet level of decomposition. These simulation results
demonstrated that the proposed method is very reliable for reducing cost
computational time of automated neuromuscular disorders system
and removing the redundancy information.
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1. INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease and rapidly progressive disorder
that directly attacks the central nervous system (CNS) and other neuronal cells which are responsible for
controlling voluntary muscle. The onset of the ALS disease characterized by degeneration of both lower
motor neurons (LMN) and upper motor neurons (UMN), with resultant muscle atrophy, muscle weakness,
and damages the nerve cells of the brain and spinal cord [1-4]. The most often affected people by ALS
disease are between the ages of 40 and 60, although can occur at some younger and older individuals [1, 5].
The last statistic estimate approximately five persons of every 100000 deaths each day, mostly as a result of
the progress of ALS disease [1, 5]. Hence, it would be of prime necessity to recognize early the patients
affected by ALS disease for medical diagnosis.

There are various well-established clinical examinations methods for neuromuscular disorders,
the frequently used are genetic and electromyography (EMG) tests, which can practically help in an early
diagnostic of ALS disease [6, 7]. In this context, electromyography has been considered to be the best clinical
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standard tool in the diagnostic of muscle disease and is commonly used for skeletal muscle investigations [8].
In fact, EMG has been traditionally utilized to assess the electrical potentials produced during contraction
and relaxation of skeletal muscle [6], this technique found a wide application in multiple domains including
rehabilitation, medicine prosthesis control, and clinical diagnosis [9]. In order to detect abnormalities for
neuromuscular, EMG signal carries pertinent information regarding the state of the muscle. In general,
the amplitude of the EMG signal varies approximately from 10uV to 5mV and the frequency content
is concentrated in the range of 5Hz to 500Hz [9-11]. The EMG signal has been assumed as a non -stationary
time series in which the statistical features and frequency content of the signal alter over time [12]. Due to
the non-stationary characteristic of the EMG signal, it has been found that Fourier transform analysis is not
suitable for EMG signal analysis. To overcome this limitation, several advanced signal processing tools have
been proposed namely-time-frequency analysis, quadratic time-frequency transform, and timescale analysis
approach [13]. These techniques have worked well for localization both in time and frequency [14].

The interest in the automatic identification of ALS disease has been receiving growing attention
from many researchers in the last years [15, 16]. The previous works have contributed to improving the
classification accuracy of diagnostic ALS disease, however, few studies have adopted discrete wavelet
transform, Abdulhamit Subasi et al employed DWT to extract statistical features from each sub-band
and then feed support vector machine (SVM) classifier for EMG signals classification. Ercan Gokgoz et al.
carried out a study for the diagnosis of neuromuscular disorders by the combination of DWT and decision
tree algorithms [4]. A. Doulah et al., have proposed a novel idea based on the extraction of DWT
coefficients-related features from dominant motor unit action potential (MUAPS) of EMG signal [17].

This study presents an automatic identification system for detecting ALS disease using the DWT
technique combined with the SVM classifier. The methodology, which is proposed in this paper is shown in
Figure 1. As seen in the flowchart, the proposed method involves three major steps: discrete wavelet
transform application, feature extraction, and classification. When applying discrete wavelet DWT, two input
factors are required: the selection of the mother wavelet and the wavelet level of decomposition. It is
important to highlight that our work focuses mainly on the influence of DWT related factors on
the performance of classification results of neuromuscular disorders system. The DWT is first applied to
decompose EMG signals into a specific frequency band and then DWT coefficient features are extracted
from each band and fed into support vector machines SVMs algorithm for EMG signals classification.
The remainder of this paper is arranged as follows. Section 2 provides an overview of the experimental data
and a brief description of the basic background theory of DWT, while the classification model and feature
extraction are explicated in section 3. The performance results and comparison with related literature studies
are presented in section 4. Finally, the conclusion of this work is given in the last section.

EMG dataset

X

DWT based
decomposition

A

selection

Feature extraction

A

Mother wavelet and wavelet level

Classification

Figure 1. Block diagram for the wavelet-based automated classification system

2. MATERIALS AND METHODS
2.1. Data acquisition

The data set in this work was taken from publicly available at Clinical Neurophysiology, Rigs
hospital, Copenhagen, Denmark. The EMG signals were recorded by inserting a fine wire electrode inside
the biceps brachii (long head& court head) from five places in the muscle at three levels of insertion
(deep, medium, low). A standard concentric needle electrode offers better selectivity of motor unit action
potentials with a low spatial gradient [7]. The complete data consists of two classes, amyotrophic lateral

A comparative study of wavelet families for electromyography signal... (Abdelouahad Achmamad)



1422 O ISSN: 2302-9285

sclerosis ALS patients’ class, and normal class. ALS class contains eight control subjects; four females
and four males aged 35-67 years old, whereas the normal class contains ten subjects aged 21-37 years, four
females and six males were in good physical shape and have any history of neuromuscular disorders before.
The EMG signals are sampled at a 20 kHz and digitalized at16-bit A/D resolution. The high and low pass
filters of the EMG amplifier were set at 2 Hz and 10 kHz respectively [3, 4, 18]. A typical example of ALS
and normal EMG signal which are selected from data sets are shown in Figure 2.
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Figure 2. EMG data pattern taken from different subjects: ALS EMG signal (lower) and normal EMG signal
(upper) for 3000 sample number

2.2. EMG signal decomposition based on DWT

Over the past three decades, continuous wavelet transform (CWT) has become more popular
because of its particularly interesting properties. In fact, CWT is a multi-scale resolution tool and is suitable for
analyzing non-stationary signal like the EMG signal better than any other existing transforms [18].
Continuous wavelet transform was developed to replace the classical short-time Fourier transform (STFT),
except that, it has solved some of STFT drawbacks which are resolution and the inherent weaknesses of
the fixed window size [19, 20]. According to the principle of CWT, the analyzed signal is convolved with
mother wavelet function y(t). Hence, the CWT of the EMG signal provided by the following [19, 21]:

CWT,(u,5) = £ [ ) emg(OY",, ()dt (1)
where
bus® = 99 2

In (1) and (2), s and u are real numbers s#0, as well as are used as scaling and shifting parameters
respectively.

Discrete wavelet transform DWT is a more powerful time-frequency/time scale representation.
Moreover, it offers an easy advantage to implement and low computation cost than other classical methods
like discrete Fourier transform (DFT) and discrete cosine transform (DCT) [18, 22]. Discrete wavelet
transform is obtained by discretizing the scaling s and shifting u parameters:s = s,/ and u = ks,’, with
k,j € Z. By substituting in (2) DWT could be written as:

So’

DWTG, 1) = £N=1 emg(n). \/% " (n—k.?of) 3

For a dyadic DWT: s, = 2.
where the superscript * denotes a complex conjugate, N the length of EMG signal and j = 1,2,...M are
the wavelet decomposition levels.

The multiresolution decomposition algorithm was originally proposed by S. Mallat in 1989
The algorithm splits the initial analyzed signal into two components known as detail coefficients ¢cDs and
approximation coefficients cAs [23]. These two specific components are efficiently generated by means of
a pair of high pass and low pass wavelet filters. After each decomposition, the down sampling frequency of
signals is done to avoid generating redundant data. This procedure is given by the following expression [24]:

aj(n) = X LoD(2n — k)a;_, (k) i=1 4
ag(n) = emg(n)
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where emg(n) is the analyzed EMG signal. n = 1,2,...N, N is the length of EMG signal. The low pass
filter is denoted by LoD (n) while the high pass filter is denoted by HiD(n). At each level j, the high pass
filter produces detail coefficients information cDs, while the low pass filter associated with scaling function
produces coarse approximations coefficients cAs. The detail and approximation coefficients of ALS
and normal EMG signals for 3000 samples are shown in Figure 3.
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Figure 3. Discrete wavelet coefficients for symlet 14, (a) DWT coefficients of normal EMG signal,
(b) DWT coefficients of ALS EMG signal

2.3. Frequency band

In each wavelet level of decomposition, the frequency band corresponding to detail and
approximation coefficients are given as follow [25]:

4L 5], gm0, (5)

2j+1'2j 2j+1

where f; is the sampling rate of the EMG signal.
As given in our dataset, the sampling frequency is 20kHz. Hence, the frequency range of each sub-band after
DWT is depicted as shown in Figure 4.
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Figure 4. Structure of frequency band for third level decomposition under a 20 KHz sampling rate

2.4. Level of decomposition selection

The level of decomposition plays an essential role in the optimization of the computation time of
the neuromuscular disorders detection system. In order to avoid time waste, the level of decomposition
corresponding to the performance of the classification must be carefully chosen. In this present work,
we have tested the classification performance based on choosing the level from 1 to Maxlev [26].

(6)

where N is the length of EMG signal and Lw is the length of the mother wavelet of high-pass and low-pass
filters, fix is round operator toward zero.

Maxlev = fix[log, (ﬁ)]
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2.5. Wavelet selection

Wavelet selection will be carried out based on several wavelets analysis tests. However, we must
also consider the wavelet properties such as vanishing moment, compact support, orthogonality, and symmetry
in wavelet selecting. The analyzing wavelets used are presented in the following Table 1.

Table 1. wavelet family with its properties

Wavelet Wavelet Member  Orthogonal ~ Compact support  Filters length Support width Vanishing
family moment
Db 'db1', ‘d45’ Yes Yes 2N 2N -1 N
Coif 'coifl', ‘coif5' Yes Yes 6N 6N —1 2N
Sym 'syml,'sym45’ Yes Yes 2N 2N -1 N
Bior biorNd, Nr Yes Yes max(2Nr,2Nd) +2 2N + 1 forrec., Nr
2Nd + 1 for dec.
Rbio rbiorNd, Nr No Yes max(2Nd,2Nr) +2 2N +1 forrec, Nr

2Nr + 1 for dec.
dmey ‘dmey’ - - - -
Where Nr, Nd, and N are the orders: r for reconstruction and d for decomposition.

3. CLASSIFICATION METHOD AND FEATURES EXTRACTION

In this study, a support vector machine (SVM) was used as the classifier model. It is one of the most
commonly used in the EMG signals classification, as it is a simple and accurate method for the identification
of neuromuscular disorders.

3.1. Support vector machine SVM

Support vector machine classifier is a type of supervised machine learning algorithm, it has a particular
advantage in solving non-linear separation and high dimensional features space problem. A classification task
basically involves training and testing data that contain data instances, each instance consists of two attribute
features and class label. Supervised training used to build a model that can predict the class label of
the data testing. The main objective of SVM is to separate the data between two classes by finding
the optimal separating hyperplane with the widest margin. The distance between support vectors and
hyperplane must be as far as possible [27-29]. Given a training set of instances label pairs { x;,y;}, x; € R%,
d is dimensional instances in the input space, and the associated y; € {—1,+1} represents a class label.
The mathematical equation of a hyperplane is:

fx) =w'x+b=0 (7
supposing that one data set is nonlinear, we need to create the SVM regression function:
fx) =wTex) +b (8)

where w € R? is the weight vector, b is the bias term and is ¢ (x) is the nonlinear function.
SVM classifier requires to find solution of the following quadratic optimization problem [28]:

i 1

min (SwTw+C3, &) (9)
subjectto  y; (f(x))=1-¢,i=12,..,N

§>0,0>0
where C is the penalty parameter of the error term, &; is a flexible variable and N is the number of data.

In practical application, the binary classification problems do not have a simple hyperplane as
a useful separating criterion. To overcome this problem, the SVM classifier uses several kernel functions [30].
In his paper, the classification model is built by using radial basis function (RBF) which can be written as

follow:

2
—llx=xl

K(xi, %) = 0()" @(x;) =€ 207 ,0#0 (10)

3.2. Feature extraction based on discrete wavelet transform DWT
The DWT has been used in many practical applications such as noise cancellation and feature
extraction. In this study, the proposed feature extraction has a significant effect on performance
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classification. Therefore, it is important to select the optimal feature with useful information, because
the performance result degrades when one or more features are irrelevant. Subsequently, various features
of wavelet coefficients are computed by using DWT, the features vectors obtained will be used in the training
and classification phase. The expressions of coefficients-related features are presented in the following
Table 2 [19, 31]:

Table 2. Features and their expressions
Feature Extraction Mathematical expression Definition
Root mean square value Measure the root mean square value of

1v 2 the wavelet coefficients in each sub-band.
RMS,, = HZ|cji| [¢5))
i=1
Normalized root mean RMS,; It operates on the basis of calculating RMS of
square nRMS,; = 1— |max(c--)| 12) the wavelet coefficients in each sub-band with amplitude
i normalized by wavelet coefficients peak value.
Energy 1 5 Measure the energy value of the wavelet coefficients in
E, = Z|cji| (13) each sub-band.
i=1
Normalized energy E Measure the ratio of energy value of
nk; = B, €2)) the size sub-band.
Maximal coefficient max(c;) (15) Maximum value of the coefficients in each sub-band.
Minimal coefficient min(c;;) (16) Minimum value of the coefficients in each sub-band.
Crest factor value |max(c;p)| Defined as the peak value of c;divided by
CE; = "RMS,. an the RMS of the coefficients in each sub-band.
J
Kurtosis Xre — Meancj)“ Measure of tailedness of the coefficients in each
- sub-band.
Kurtosis, = STnD 2 (18)
Skewness Yiti(cj; — Mean, ].)3 Measure the lack of symmetry of the coefficients in each sub-
- band.
Skewness ., = n 3 (19)
i STD,;,
Variance 1 @ 2 Measure of how far a set of numbers is spread out from
Varcj = mz |cji - Meanci (20)  mean.
i=1
Standard deviation N 2 A measure of dispersion of the coefficients in each
iz1(¢; — Mean,) sub-band
ST, = |—————— (21 :
Normalized standard STD STD; 22) Measure ratio standard deviation of subtraction
ot n ==E— H s H
deviation cj max(c,-) — min(c)) of maximum and minimum values in each sub-band.
Mean value e Represents the average value absolute value of the
Mean,; = — (23) coefficients in each sub-band.
Median value Md. = 1 ( n ) . A sample value separating higher from the lower half
¢ = p\epTen) niseven (24) Of wavelet coefficients.
Mdc, = Cn-1) ,nisodd
2
Zero crossing n sgn(cy * cyea) O |C“ e | It is a number of times that amplitude values of
ZCCI‘Z[ e ;*ﬁ b ]lld ji+t ] (25) the wavelet coefficients cross zero amplitude level.
F=1 = thresho To avoid low voltage fluctuations, the threshold
1,if ¢ > threshold condition is applied.

sen = { 0, otherwise

From the features expression, i = 1,2, ...n, n is the length of each band and j = 1,2, ... Maxlev are
the wavelet decomposition levels while c;; denoted of detail coefficients from each level of decomposition
and approximation coefficients at last decomposition level.

4. RESULTS AND DISCUSSION

The purpose of this work is to study the EMG signals acquired from the normal and affected
brachial biceps by applying DWT in order to determine the suitable mother wavelet and level of
decomposition, which yield the best classification performances. The EMG signals are decomposed into
maximum level decomposing using different mother wavelets, fifteen coefficients-related features are
extracted and then passed through the SVM classifier with the RBF kernel for EMG signals classification.
To further analyze the robust performance of the neuromuscular diagnostic system, one of the well-known cross-
validation (CV) algorithms named 10-fold CV is deployed as data set partitioning with a total of 18 subjects.

Cross-validation is a measurement for evaluating the performance of predictive model and ensuring
the reliable performance of SVM classifier. There are many types of cross validation such as k-fold, hold out,
and leave one cross-validation, we picked up k-fold cross validation for assessment. K-fold cross validation
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(k-CV) is a method of broken the original data randomly into the k subsets for machine learning technique
routine SVM with k-CV (k-CV SVM), then k — 1 subsets are used as training data and the single subset data
remaining is regarded as data test of classification model. The whole process is repeated k-folds time
and each k subset is employed exactly once as data testing while the k — 1 subsets are employed as training
data before data testing. The performance of classification is calculated for each data testing, then the final
average of the performance is obtained by averaging the performances of all data testing. SVM classifier is
performed by using three parameters in order to examine our neuromuscular disorders system. The three
parameters are accuracy, sensitivity and specificity with their mathematical expressions written as follows:

TP+TN

Accuracy(%) = 0 X 100% (26)
Sensitivity (%) = TPT+PFN X 100% (27)
Specificity (%) = Tl\’Ir:—\IFP x 100% (28)

TP, TN, FP and FN are measured from matrix confusion which contains information about prediction
and actual labels [32]. Where:

TP : true positives (is the number of normal EMG signals identified as normal EMG signals)

TN : true negatives (is the number of ALS EMG signals classified as ALS EMG signals)

FP : false positives (is the number of ALS EMG signals recognized as normal EMG signals)

FN : false negatives (is the number of normal EMG signals distinguished as ALS EMG signals)

As mentioned in the introduction, our method consists to study the effect of different wavelet family
and decomposition level on the DWT based neuromuscular diagnostic. In our proposed approach we investigate
some optimization techniques to further reduce computation cost and increase the accuracy of our diagnostic
system. This approach has been never used for classification of the neuromuscular disorders before.
We implement our approach for different mother wavelets and related levels of decomposition. Table 3 shows
the classification accuracies with optimal level obtained by our approach.

Table 3. Performance results of the proposed method

Wavelet Wavelet  Maximum  Bestaverage accuracy + Wavelet Wavelet ~ Maximum  Best average accuracy +
Family ~ member  level standard deviation /optimal ~ Family =~ member  level standard deviation/optimal
level level

Db dbl 17 92.01+ 0.51%/14 Sym syml 17 92.0+0.30%/14
db2 16 91.94 + 0.80%/8 sym2 16 91.43 + 0.56%/8
db3 15 92.04 £+ 0.50%/8 sym3 16 92.04 £+ 0.63%/8
db4 15 92.16 + 0.56%/8 symé 15 92.04 £+ 0.24%/8
db5 14 92.67 + 0.49%/12 sym5 14 93.70 + 0.63%/9
db6 14 92.46 + 0.46%/12 symé 14 93.45 + 0.29%/12
db7 14 91.71 + 0.43%/9 sym7 14 92.19 + 0.73%/9
db8 14 91.68 + 0.45%/7 sym8 14 92.94 + 0.59%/12
db9 13 92.09 + 0.31%/10 sym9 13 92.19 + 0.54%/8
db10 13 94.2 +0.86%/12 sym10 13 92.21 + 0.46%/9
dbll 13 92.01 4+ 0.47%/8 symll 13 93.19 + 0.23%/9
db12 13 93.45 + 0.58%/8 sym12 13 92.77 + 0.31%/8
db13 13 93.70 + 0.34%/9 symi3 13 91.53 +0.47%/7
dbl14 13 92.16 + 0.66%/9 syml4 13 94.20 + 0.53%/8
db15 13 91.53 + 0.75%/9 sym15 13 93.07 £ 0.57%/8

Bior biorl.1 17 91.56 + 0.81%/11 Rbio rbiol.1 17 92.11 + 0.428%/14
biorl.3 15 90.93 + 0.42%/9 rbiol.3 15 91.51 4+ 0.69%/7
biorl.5 14 91.25 + 0.37%/7 rbiol.5 14 91.9 + 30.44%/9
bior2.2 15 92.74 4+ 0.57%/8 rbio2.2 15 92.11 +0.60%/8
bior2.4 14 92.51 4+ 0.35%/8 rbio2.4 14 91.18 + 0.35%/7
bior2.6 14 92.24 + 0.33%/8 rbio2.6 14 92.34 + 0.29%/12
bior2.8 13 92.06 + 0.47%/8 rbio2.8 13 92.16 +0.67%/8
bior3.1 16 91.36 + 0.59%/7 rbio3.1 16 91.25+ 0.51%/8
bior3.3 15 91.28 + 0.44%/7 rbio3.3 15 91.20 + 0.49%/8
bior3.5 15 93.95+ 0.60%/9 rbio3.5 14 91.83 +0.53%/9
bior3.7 14 92.44 4+ 0.23%/11 rbio3.7 14 92.14 +0.54%/10
bior3.9 13 91.76 + 0.23%/10 rbio3.9 13 92.36 +0.70%/9
bior4.4 13 91.73 + 0.28%/8 rbio4.4 13 91.08 + 0.46%/6
bior5.5 14 91.98 + 0.57%/9 rbio5.5 13 91.78 + 0.29%/8
bior6.8 13 92.74 + 0.19%/9 rbio6.8 13 92.36 +0.53%/9

Coif coifl 15 91.93 + 0.41%/6 Coif coif4 13 91.63 + 0.44%/8
coif2 14 92.34 £ 0.24%/8 coifs 13 91.00 + 0.53%/6
coif3 13 91.46 + 0.67%/9 Dmey dmey 11 92.31+0.43%/8

Bulletin of Electr Eng & Inf, Vol. 9, No. 4, August 2020 : 1420 — 1429



Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 1427

From Table 3, it is clear that the decomposition level affects the accuracy substantially regardless of
the mother wavelets. The experiments are carried out by using MATLAB 2015a software on Windows
10 PC with Intel Core i5 processor 2.5 GHz. As can be seen, the results proved that there is no significant
difference in classification accuracy between different mother wavelets. All mother wavelets have achieved
average accuracy above (91%) at different optimal decomposition level. Based on classification accuracy,
the best member wavelets selected from each family are db10, syml4, bior3.5, rbio3.9, dmey, coif2.
However, the highest average accuracy(94.2%) was achieved by Daubechies (order 10) and Symelet
(order 14) at 12th decomposition level and at 8th decomposition level respectively. This satisfactory accuracy
of db10 and sym14 justified by their good properties.

Simulation results in Figure 5 indicate that the classification performance increase with the
increasing of decomposition level. Moreover, from our obtained result it was observed that there is no
significant change in classification performance after optimal decomposition level of candidate mother
wavelets. It is clear that more level of decomposition provides a detailed illustration of the EMG signal, but it
can generate feature redundancy and noise, which lead to increased computation cost and reduced
classification performance of diagnostic system.
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Figure 5. Classification result of the six selected wavelet member versus decomposition levels
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As a result, all the results in Tables 3, 4, and Figure 5 show the same conclusion: According to
the highest performance classification the suitable mother wavelets of each wavelet family are finally
selected with their optimal level of decomposition. We can conclude that the Symelt (order14) is found
to be the best for classifying EMG signals which indicate high-performance classification and optimal
decomposition compared to other candidate mother wavelets. The results of our approach are comparable
with other similar and recent works in the neuromuscular diagnostic. Table 5 gives the classification
accuracies of the previous studies and our work. As can be seen, our method achieved promising
classification accuracy.

Table 4. Summary of results
Wavelet selected  Average accuracy (%)  Average sensitivity (%)  Average specificity (%) Max level Level selected

db10 94.20 + 0.86% 81.63 + 2.12% 98.32 £ 0.55% 13 12
bior3.5 93.95 £ 0.60% 82.65 + 1.86% 97.65 £ 0.45% 15 9
coif2 92.34 1 0.24% 77.65 + 1.31% 96.92 + 0.21% 14 8
syml14 94.20 £ 0.53% 82.65+1.55% 98.66 + 0.32% 13 8
dmey 92.31+0.43% 78.16 + 1.19% 96.95 + 0.36% 11 8
rbior3.9 92.36 + 0.70% 78.26 + 1.27% 96.98 £ 0.74% 13 9

Table 5. Performances comparison of EMG classification methods

Methods Total subjects  Total classes  Highest classification accuracy (%)
TQWT [33] 18 2 95%

IEMD [4] 18 2 92.66%

Our approach 18 2 94.20%

5. CONCLUSION

The discrete wavelet transform is an efficient method for evaluating electromyography signal more
than other methods. This work is concerned with the selection of optimal DWT factors for neuromuscular
disorders based on performances classification. For performing the classification process, SVM classifier was
proposed. The simulation results show that the proposed method can make a powerful analysis. After doing
all the test of the mother wavelets, the sym14 has been selected as a suitable mother wavelet at 8th levels of
decomposition for EMG signals classification. It has been found that performances classifications are
sensitive to decomposition level regardless mother wavelet. Finally, this study has been done to demonstrate
clearly that the selection of mother wavelet and decomposition level plays also an important role in terms of
classification performance of neuromuscular disorders.
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