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ABSTRACT

This paper studies a downlink security-aware secure outage performance in the sec-
ondary network of cognitive radio-assisted non-orthogonal multiple access network
(CR-NOMA). The multiple relay is employed to assist transmission from the sec-
ondary source to destinations. The security-aware performance is subject to constraints
in fixed power allocation factor assigned to each secondary user. The security-aware
secure performance is based on channel state information (CSI) at the physical layer
in which an eavesdropper intends to steal information. According to the considered
system, exact expressions of Strictly positive secure capacity (SPSC) are proved to
analyze system in terms of secure performance. Finally, the secondary user secure
problem is evaluated via Monte-Carlo simulation method. The main results indicate
that the secure performance of proposed system can be improved significantly.
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1. INTRODUCTION
Both non-orthogonal multiple access (NOMA) and physical-layer security (PLS) have been introduced

as promising enabling technologies to implement some applications for Internet of Things (IoT) or future sys-
tems [1-4]. Recently, the coexistence of these two important communication techniques benefits from cognitive
ability and massive connections and these hybrid techniques have been considered to provide spectral efficient
improvement for wireless transmission such as recent work [6-8].

Furthermore, physical-layer security (PHY) has attracted great interests while wireless applications
are more popular. PHY based secure method does not require extra resources for the secret key [10-14]. In order
to achieve secure communication, one can exploit the physical layer characteristics of the wireless channels.
However, the secrecy rate of wireless communication systems is constrained by the channel state information
[15]. In order to improve the secrecy rate, many methods are introduced such as jamming, multiple antennas,
cooperative relaying and artificial noise (AN)-aided techniques have been studied [16]. Main results reported
in [17-24] that these techniques benefit to improve the secrecy rate.

Interestingly, most existing works have mainly focused on the performance and optimization of the
PLS in NOMA systems . However, there is still open problems to rigorously study the feasibility of achieving
the better secure performance by using best relay selection in secondary network of CR-NOMA systems.
Although the joint user scheduling and power allocation problems are investigated for NOMA-based wireless
network in [17], how cognitive radio technology affects the secure performance for NOMA-based wireless
network needs further studies. In this paper, we study the security-aware SPSC metric CR-NOMA network.
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2. SYSTEM MODEL
In Figure 1, we consider the CR system containing the secondary network including base station (BS).

To enhance performance of distance users, we need N relay nodes. Regarding distance users, two destination
U1, U2, one eavesdropper E are considered their performance. Through the paper, hu is denoted as channel
for node u, and it follows Rayleigh fading model with channel gain λu. It is noted that PS is transmit power
at BS and it is limited under constraint with the primary network which contains primary destination PD. The
interference channel from BS to the primary network is hSP . hRn is the channel between BS and R. hRn is
denoted as the channel between relay and Ui.

U2

U1

BS
hR,n

1Uh

2Uh

hSP

PD

R1

RN

E

Interference Link

Main Link

Wiretap Link

Figure 1. Secure CR-NOMA system

In CR-NOMA, the transmit power at the BS is constrained by (1)

PS ≤ min

(
I

|hSP |2
, P̄S

)
(1)

in which, we call P̄S and I as maximum average transmit power at the BS and interference temperature con-
straint (ITC) at primary destination PD, respectively. At the first hop transmission, the n-th node among N
relay node, the received signal can be formulated by (2)

yR = hRn

(√
a1PSx1 +

√
a2PSx2

)
+ nRn (2)

where the AWGN noise terms at R is nRn . Regarding the relay is used to forward signal, the criteria to select
relay with its index, i.e. n∗ is formulated related the best channel

n∗ = arg max︸︷︷︸
1,2,...,N

|hRn |
2 (3)

To decode signal x1 and x2 at R, the signal-to-interference-plus-noise ratio (SINR) is given by (4).

SNR1
R =

a1ρS |hRn |
2

a2ρS |hRn |
2

+ 1
(4)

where ρS = PS
σ2 is the transmit signal to noise ratio (SNR) at the BS. At relay relying SIC, it is necessary to

examine the received SNR at R to detect message x2 as (5).

SNR2
R = a2ρS |hRn|2 (5)

In the next phase, the link netween selected relay Rn and Ui, i = 1, 2 is required to proceed signal√
a1PRx̄1 +

√
a2PRx̄2. PR is called as the transmit power at R. The received signal Ui is expressed by (6)

yUi = hUi
(√
a1PRx̄1 +

√
a2PRx̄2

)
+ nUi ,∀i ∈ {1, 2} (6)

in which the AWGN noise terms is nUi measured at Ui. Further, principle of NOMA applied to Ui with higher
power factor, it can detect x̄1 by considering x̄2 as a background noise with (7)
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SNRU1
=

a1ρR|hU1
|2

a2ρR|hU1
|2 + 1

(7)

where ρR = PR
σ2 is the transmit SNR at R. To continue detecting procedure, U2 needs SIC to decode x̄1 while

considering its own data x̄2 as a noise. The SINR is written as (8).

SNRU2,x1
=

a1ρR|hU2
|2

a2ρR|hU2
|2 + 1

(8)

In this regard, U2 detects its own signal and the corresponding SNR is given as (9).

SNRU2,x2
= a2ρR|hU2

|2 (9)

Unfortunately, eavesdropper steals information from the selected relay, the received signal at E is
given as (10)

yE = hE

(√
a1PE x̄1 +

√
a2PE x̄1

)
+ nE (10)

where nE is the AWGN noise terms at E. The channel between Relay and E is hE . Then, SNR at E is given as

SNREi = aiρE |hE |2 , i ∈ {1, 2} (11)

where ρE = PE
σ2 is transmit SNR at E. The secrecy capacity for U1, U2 are computed respectively as

C1 =

[
1

2
log2

(
1 + min

(
SNR1

R, SNRU1

)
1 + SNRE1

)]+

, (12)

C2 =

[
1

2
log2

(
1 + min

(
SNR2

R, SNRU2,x2

)
1 + SNRE2

)]+

, (13)

where [x]
+

= max [x, 0].

3. SPSC ANALYSIS
3.1. SPSC computation at U1

We first using decode-and-forward scheme at relay node and consider SPSC performance of the first
user U1 as (14).

G1 = Pr (C1 > 0)

= Pr
(
min

(
SNR1

R, SNRU1

)
> SNRE1

)

=

Pr

|hRn∗ |2 >
ρE |hE |2

ρ̄S

(
1− ρEa2|hE |2

) , ρ̄S < ρI

|hSP |2


︸ ︷︷ ︸

G1,1

+ Pr

|hRn∗ |2 >
ρE |hE |2|hSP |2

ρI

(
1− a2ρE |hE |2

) , ρ̄S > ρI

|hSP |2


︸ ︷︷ ︸

G1,2


× Pr

|hU1
|2 > ρE |hE |2

ρR

(
1− a2ρE |hE |2

)


︸ ︷︷ ︸
G1,3

(14)
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We then compute each component G1,1, G1,2, G1,3 as (15).

G1,1 = Pr

|hRn∗ |2 >
ρE |hE |2

ρ̄S

(
1− ρEa2|hE |2

) , |hE |2 < η, ρ̄S <
ρI

|hSP |2



=

ρI
ρ̄S∫
0

f|hSP |2 (x)

η∫
0

f|hE |2 (y)

[
1− F|hRn∗ |2

(
ρEy

ρ̄S (1− ρEa2y)

)]
dxdy

=
(

1− e−
ρI

ρ̄SλSP

) N∑
n=1

(
N
n

)
(−1)

n−1

λE

η∫
0

e
−y

(
1
λE

+
nρE

ρ̄SλSR(1−a2ρEy)

)
dy

(15)

where η = 1
a2ρE

.
The closed-form expression for G1,1 is very difficult to achieve, then using the formula Gaussian-

Chebyshev quadrature, G1,1 is given as (16)

G1,1 ≈
(

1− e−
ρI

ρ̄SλSP

) N∑
n=1

P∑
p=1

( ) ηπ(−1)
n−1
√

1− ς2p
2PλE

× e
− (ςp+1)η

2λE
− (ηςp+η)nρE
ρ̄SλSR[2−a2ρE(ηςp+η)]

(16)

where ςp = cos
(

2p−1
2P π

)
.

Next, G1,2 is calculated as (17).

G1,2 = Pr

|hRn∗ |2 >
ρE |hE |2|hSP |2

ρI

(
1− a2ρE |hE |2

) , |hE |2 < η, ρ̄S >
ρI

|hSP |2


=

η∫
0

f|hE |2 (x)

∞∫
ρI
ρ̄S

f|hSP |2 (y)

[
1− F|hRn∗ |2

(
ρExy

ρI (1− a2ρEx)

)]
dxdy

=

N∑
n=1

(
N
n

)
(−1)

n−1

λSPλE

η∫
0

e
− x
λE

∞∫
ρI
ρ̄S

e
−y

(
1

λSP
+

nρEx

ρI(1−a2ρEx)λSR

)
dxdy

=

N∑
n=1

(
N
n

)
(−1)

n−1

λSPλE

η∫
0

e
− x
λE
− ρI
ρ̄S

(
1

λSP
+

nρEx

ρI(1−a2ρEx)λSR

)

×
(

1

λSP
+

nρEx

ρI (1− a2ρEx)λSR

)−1

dx

(17)

Keep using the formula Gaussian-Chebyshev quadrature, G1,2 is given by (18)

G1,2 ≈
N∑
n=1

V∑
v=1

( ) ηπ(−1)
n−1√

1− υ2
v

2V λSPλEΦ (w)
e
− (υv+1)η

2λE
− ρIΦ(υv)

ρ̄S (18)

where υv = cos
(

2v−1
2V π

)
and Φ (w) =

(
1

λSP
+ nρE(ηw+η)

[2−a2ρE(ηw+η)]ρIλSR

)
.
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Next, G1,3 is calculated as (19)

G1,3 = Pr

|hU1
|2 > ρE |hE |2

ρR

(
1− a2ρE |hE |2

) , |hE |2 < η


=

η∫
0

f|hE |2 (x)

[
1− F|hU1 |2

(
ρEx

ρR (1− a2ρEx)

)]
dx

=
1

λE

η∫
0

e
−x

(
1
λE

+
ρE

λU1
ρR(1−a2ρEx)

)
dx

(19)

Keep using the formula Gaussian-Chebyshev quadrature, G1,3 is given by (20)

G1,3 ≈
πη

2λEQ

Q∑
q=1

√
1− ς2q e

− (ςq+1)η
2λE

− (ςq+1)ρEη
λU1

ρR[2−(ςq+1)a2ρEη] (20)

where ςq = cos
(

2q−1
2Q π

)
.

Substituting (20), (18) and (16) into (14), G1 is given by (21)

G1 =

(1− e−
ρI

ρ̄SλSP

) N∑
n=1

P∑
p=1

(
N
n

) ηπ(−1)
n−1
√

1− ς2p
2PλE

× e
− (ςp+1)η

2λE
− (ηςp+η)nρE
ρ̄SλSR[2−a2ρE(ηςp+η)]

+

N∑
n=1

V∑
v=1

(
N
n

)
ηπ(−1)

n−1√
1− υ2

v

2V λSPλEΦ (w)
e
− (υv+1)η

2λE
− ρIΦ(υv)

ρ̄S

]

× πη

2λEQ

Q∑
q=1

√
1− ς2q e

− (ςq+1)η
2λE

− (ςq+1)ρEη
λU1

ρR[2−(ςq+1)a2ρEη]

(21)

3.2. SPSC computation at U2

In similar way, SPSC of user U2 is expressed by (22)

G2 = Pr (C2 > 0)

= Pr
(
min

(
SNR2

R, SNRU2,x2

)
> SNRE2

)
=

Pr

(
|hRn∗ |2 > āa2ρE |hE |2, |hSP |2 <

ρI
ρ̄S

)
︸ ︷︷ ︸

G2,1

+ Pr

(
|hRn∗ |2 > ãa2ρE |hE |2|hSP |2, |hSP |2 >

ρI
ρ̄S

)
︸ ︷︷ ︸

G2,2


× Pr

(
|hU2
|2 > ρE |hE |2

ρR

)
︸ ︷︷ ︸

G2,3

(22)

where ā = 1
a2ρ̄S

and ã = 1
a2ρI

. These terms G2,1, G2,2, G2,3 are respectively formulated by (23) and (24)
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G2,1 = Pr

(
|hRn∗ |2 > āa2ρE |hE |2, |hSP |2 <

ρI
ρ̄S

)

=

ρI
ρ̄S∫
0

f|hSP |2 (x)

∞∫
0

f|hE |2 (y)
[
1− F|hRn∗ |2 (āa2ρEy)

]
dxdy

=
(

1− e−
ρI

ρ̄SλSP

) N∑
n=1

(
N
n

)
(−1)

n−1

λE

∞∫
0

e
−y

(
1
λE

+
nāa2ρE
λSR

)
dy

=
(

1− e−
ρI

ρ̄SλSP

) N∑
n=1

(
N
n

)
(−1)

n−1
λSR

λSR + nλE āa2ρE

(23)

G2,2 = Pr

(
|hRn∗ |2 > ãa2ρE |hE |2|hSP |2, |hSP |2 >

ρI
ρ̄S

)

=

∞∫
0

f|hE |2 (x)

∞∫
ρI
ρ̄S

f|hSP |2 (y)
[
1− F|hRn∗ |2 (ãa2ρExy)

]
dxdy

=

N∑
n=1

(
N
n

)
λSR(−1)

n−1
e
− ρI
ρ̄SλSP

na2ãρEλEλSP

∞∫
0

e−`nx

$n + x
dx

(24)

where `n = 1
λE

+ nãa2ρE
λSR

and $n = λSR
λSPnãa2ρE

.

We are using [[25], 8.211.1], G2,2 is given by (25).

G2,2 =

N∑
n=1

(
N
n

)
λSR(−1)

n
e
− ρI
ρ̄SλSP

+`n$n

na2ãρEλEλSP
Ei (−`n$n) (25)

Next, we are calculated G2,3 as (26).

G2,3 = Pr

(
|hU2 |

2
>
ρE |hE |2

ρR

)

=

∞∫
0

f|hE |2 (x)

[
1− F|hU2 |2

(
ρEx

ρR

)]
dx

=
1

λE

∞∫
0

e
−x

(
1
λE

+
ρE

ρRλU2

)
dx

=
ρRλU2

ρRλU2
+ λEρE

(26)

Substituting (26), (25) and (23) into (22), G2 is given by (27).

G2 =

N∑
n=1

(
N
n

)
ρRλU2

λSR
ρRλU2 + λEρE

[(
1− e−

ρI
ρ̄SλSP

) (−1)
n−1

λSR + nλE āa2ρE

+
(−1)

n
e
− ρI
ρ̄SλSP

+`n$n

na2ãρEλEλSP
Ei (−`n$n)

] (27)
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4. NUMERICAL RESULTS
Our simulation parameters here are a1 = 0.7 and a2 = 0.3. N = 2, R1 = R2 = 1. ρI = 5 dB.ρE =

15 dB. λSP = 0.1, λSR = 1, λRD1 = 0.9, λRD2 = 0.6 and λRE = 0.1. Q = V = 1000.
Figure 2 depicts SPSC performance versus transmit SNR. We consider many cases related to CR-

NOMA for ρE = 5, 10, 15(dB). It is very high value of SPSC when increasing ρ to 20 (dB) and greater.
Signal x2 provides better SPSC performance compared with signal x2, and it can be explained that different
power allocated to each signal. Comparing the simulation results with the analytical results, there are tight
matching curves.

It can be seen how the number of the relay nodes make impacts on SPSC performance at Figure 3.
Similar trend of SPSC can be reported in Figure 3, it means SPSC will be worse as increasing ρ to 30 (dB).
Figure 3 depicts SPSC curves is highest at N = 15. When ρ is greater than 25 (dB), SPSC curves meet
saturation.
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SPSC versus transmit SNR at BS
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Figure 3. SPSC versus transmit SNR at BS with
different number of relay nodes

5. CONCLUSION
The paper studied SPSC in cognitive radio newtwork using NOMA and relay selection. Secure per-

formance is considered as existence of an eavesdropper and acceptable SPSC can be known. Moreover, the
approximate expressions in term of SPSC are derived to exhibit performance of two destinations. The deriva-
tions and analysis results showed that the proposed relay selection in CR-NOMA can effectively enhance the
secure performance.
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