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1. INTRODUCTION

Self-adaptation is a promising strategy used to address the uncertainty, dynamicity and complexity
of modern software systems and their environments [1-3]. It enables a software system which consists
of an autonomic manager to monitor the targeted system, detect the need for adaptation, make an adaptation
whenever needed, and execute the plan to change the behavior of the targeted system from unwanted state
to the required state. The notion of self-adaptation has been promoted and approached in many areas, among
them, service-oriented systems [4, 5] and cloud-based system [6], and cyber-physical systems [7].

In the context of cloud computing, self-adaptation is useful especially for Autonomic Clouds [6]
which introduces the notion of self-adaptive of multi-cloud environment. Each cloud has an autonomic
manager that is capable to perform self-adaptation depending on the management tasks (e.g. allocation,
scheduling, migration, scaling). For instance, in the case of application deployment, self-adaptation is needed
to migrate an application from a cloud to another cloud when dealing with resource scarcity and to ensure
the Service Level Agreement of the cloud application can be fulfilled.
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One of the key techniques to realize self-adaptation is based on the software synthesis. The common
aim of synthesis for SASS is to generate a correct system behavior (correct-by-construction) that satisfies
certain goals as a result of self-adaptation. Generating a correct system behavior manually requires
a substantial development effort and a thorough knowledge of the application domain. Hence, automated
synthesis is needed to guarantee the generation of a system design with the targeted system behavior.
Many approaches have been proposed to realize synthesis method for SASS as discussed in [8], namely,
synthesis of service compositions [9], synthesis of self-adaptive connectors [10], parameter synthesis [11],
and synthesis for self-adaptation [12].

In this work, we focus on the synthesis for self-adaptation that aims to either analyze
best- or worst-case scenarios of alternative designs for self-adaptation mechanisms with the assumptions
of the system behavior in relation to the operating environment. The key challenge to perform synthesis
for self-adaptation lies on the complexity of synthesis tasks, in particular to explore the generated adaptation
strategies with different combination of quality attributes and uncertainty of the environment. For this reason,
an automated synthesis for self-adaptation is very much needed. The underlying technique to realize
self-adaptation and its relation to the operating environment, is based on model checking of stochastic
multiplayer games (SMGs) [13]. This technique is suitable since it allows capturing the uncertainty
and variability of the environment, and the competitive behavior between the self-adaptive system
and its environment.

There are limited works that attempted to address automated synthesis for self-adaptation decision
using model checking techniques, namely, Camara et al. [12], Franco et al. [14], Pandey et al. [15],
Camara et al. [16]. The review on these works result in several conclusion. Firstly, there is only [12] applied
SMG, whilsts other applied DTMC (in [14 and 16]), and MDP (in [15 and 16]) as the focused model.
All of them made use of PRISM model checker [17], except [12] that utilized PRISM games model
checker [18] for the synthesis engine. However, it is not clear how far the work by [12] has integrated their
simulation with PRISM games as the backend. Recent work by Ismail and Kwiatkowska [19] addressed
synthesis for self-adaptation within the context of autonomic cloud. However, the simulation part was not
targeted for GUI-driven prototype.

Therefore, this work extends the previous work of [19] to provide GUI support in dealing
with repetitive exploratory and experimenting activities that include configuration settings, dataset generation,
creation of specification, model synthesis, and visualizing the outcomes. In particular, this work contributes
to ease three main activities: (i) the parameters configuration, (ii) the execution of a series
of simulation for the (re)synthesis that is integrated with the libraries of PRISM games model checker [18],
(iii) the aggregation and presentation of performance results using JFreeChart [20], (iv) and the exploration
of synthesis outcomes using JUNG framework [21]. We utilize the adaptation decision problem of autonomic
clouds application deployment scenario of Science Cloud Platform (SCP) [6] to illustrate the feasibility
of the prototype. The rest of this paper is organized as follows. Section 2 introduces the exemplar scenario
for this work. Section 3 present the design of the proposed prototype. In Section 4, we discuss
the implementation of the prototype. We then conclude the paper in Section 5.

2. EXAMPLAR SCENARIO

In this section, we introduce the exemplar scenario relates to the autonomic clouds environment
as proposed in [6]. In this environment, there are a group of clouds, also known as ensemble [22] that need
to work collaboratively to provision resources while having different roles, such as initiator and deployer.
Each cloud can join and leave the group. Furthermore, each cloud is embedded with an autonomic manager
[23] that can monitor its current resource, make decision if an adaptation is required (i.e. limited resource,
virtual machine failure) and perform the planned action. In this scenario, the adaptation decision problem
is to choose the best cloud to take the responsibility to deploy the application. Meanwhile, the decision maker
is the cloud that is having resource scarcity and not able to continue deploying the cloud application.
The challenges in making the decision are influenced by several factors that include multi-objectives
(i.e. minimize cost and maximize reliability), uncertainty of adaptation outcomes (i.e. fail to deploy due
to the selected cloud becomes unavailable), and the resource variation in terms of timeslots. The details can
be referred to [19]. Hence, the GUI-driven prototype should be able to ease the experiment activities
for exploring and evaluating the quality of synthesized adaptation decision.

3. APPROACH DESIGN
In this section, we introduce the architectural model and the process flow of the proposed prototype.
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3.1. Architectural model

We view its architectural from input, components, and output perspective. The objective
of the proposed support tool is to ease the assessment and exploration of synthesis-driven component.
The input data focuses on representing the runtime scenario. Therefore, we divide the inputs as those which
can be set manually and those that are generated randomly. The data that can be set manually refers
to the number of simulation cycle, the range number of cloud collaborators, and the range number
of variation for each cloud that we are interested in the assessment. Meanwhile, the data to be generated
randomly refers to the quantitative information of provisioning an application onto a specific resource
(i.e. for each variation of each cloud), specifically, the execution time, the reliability, and the cost.

The output data can be classified into two stages, intermediate output data and the presentable output
data. The intermediate output data is generated after completing execution of synthesis-driven component per
simulation cycle. The intermediate output data can be classified into two types; (i) the outcome of
the synthesis-driven approach stored in two files i.e. state-transition and strategies file, and (ii) the behavior
of the synthesis-driven behavior stored in the log files. The state-transition file contains the state-transition
model as a result of pre-processing of model checking. The strategies file contains the winning strategies as
a result of performing model checking with strategy synthesis. It is important to note that, we only keep
the version of both files of the last simulation cycle for the sake proof-of-concept. Meanwhile, the log files
contain the performance behavior of synthesis-driven approach according to the configuration setting.
These log files are kept for every simulation cycle. The presentable output data can only exists, once
the intermediate output data is generated. Furthermore, it is generated upon request, by the system user.

The architecture consists of several components. Firstly, the interface panel to enable some
configurations, initiate certain tasks (i.e. simulation, results presentation and visualization) and to present
a chart as well as to visualize graph. Secondly, the simulator to support data generation process
by controlling the amount of simulation cycle and to compute some data for displaying purpose. Thirdly,
the synthesis controller to control the execution of synthesis-driven approach. Fourthly, the stochastic games
engine or libraries to execute the stochastic games model checking with synthesis algorithm, the Pareto set
computation algorithm, and to export the state-transition and strategies profiles.

3.2. Overall process flow

We divide the process flow into three stages, namely, data generation, chart presentation, and graph
visualization. We present the process flow as a sequence diagram. Figure 1 illustrates the data generation part
with simulation as the core task. The sequence diagram for the chart presentation and graph visualization
is not illustrated due to the page constraint.

The data generation begins with the initiation activity from the system user via the interface panel.
It involves inserting data into the required configuration parameters (1) and making a simulation request i.e.
through pressing button (2). This will trigger the simulation task of the simulator which executes based on
number of simulation cycle (3). For each cycle, it starts with the generation of random values to represent
the runtime information (4). Then, the simulator initiates the synthesis task via synthesis controller (5) that
results in encoding the model and properties specification (6) followed by pre-processing task (7). After that,
the synthesis controller initiate the model checking process (8) via stochastic games engine that perform
the model checking algorithm with strategy synthesis based on multi-objective properties (9). The successful
completion of model checking results in the generation of log data, state-transition and strategies
files (10|13). In the case of failure, re-synthesis is performed. It starts with the computation of Pareto set
followed by executing the model checking task (12). The re-synthesis will be done within a certain threshold.
The status of this generation is returned to the synthesis controller (11|14).

Once the simulation cycle has been completed, the system user can choose to either exploring
the performance behavior of the synthesis-drive component via chart presentation or exploring
the state-transition and strategies via graph visualization. The chart presentation or graph visualization begin
when the user makes the request through interface panel (15]20) which triggers the request
to the simulator (16]21). If the data has not been generated yet, then error message will be displayed (19]24).
Otherwise, the logged/gathered data is computed for the chart presentation (17) or prepared for the graph
visualization (22), and display to the user (18|23).
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Figure 1. Data generation process

4. IMPLEMENTATION

We have implemented a proof of concept prototype for addressing cloud application deployment
problem discussed earlier. The main interface of the prototype system is shown in Figure 2. It provides
the configuration panel for the user to enter the respective parameters, the button to execute the synthesis
process, the chart panel to show the performance results, and the button to visualize the state-transition graph
and the strategies graph.

The parameters that can be set by the system users are meant to define the cloud deployment model
as well as the simulation setting. Specifically, the items are as follows. Number of Cloud that is used
to define a group of clouds that is currently in the joint collaboration. Number of Variation that is needed
to define a series of resource variation in terms of timeslots for each cloud. A timeslot determines
the expected resource utilization by a cloud. Number of Simulation Cycle that is used to set the number
of cycle per combination of cloud and its variation. It is important to obtain the mean value. Value
Assignment that is required to set when to assign the generated random values into the behavioral model
specification, either during the creation of model specification, or during the creation of a model instance.
This parameter is relevant for the user to explore the performance of synthesis in relation to the values
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assignment stage. Finally, Objective Properties with three objectives, specifically, cost, time, and reliability.
We choose these three objectives since they are commonly used to evaluate the quality goals of self-adaptive
systems, e.g. [24, 25]. For each objective, the system user can define the threshold values and its comparator
symbol (i.e. $<, >, = 3).

Support Tool for Strategy Synthesis Assessment - o X
Configuration Parameters ( Performance Chart |
Range Distance Value
No of Cloud : [2 || © s | & i
No of Variation: |2 = ] =N

No of Simulation Cycle: [10

Assign Value : @ true O false

Set the threshold for each objective:

Comparator Threshold

Cost: [< [v] [100
Time: (< [v] [1000
Reliability: [>  |v| [0.85
I Generate Chart
Execute

Transition Graph [ Strategy Graph

Figure 2. Main interface of the prototype

The parameters that can be set by the system users are meant to define the cloud deployment model
as well as the simulation setting. Specifically, the items are as follows. Number of Cloud that is used
to define a group of clouds that is currently in the joint collaboration. Number of Variation that is needed
to define a series of resource variation in terms of timeslots for each cloud. A timeslot determines
the expected resource utilization by a cloud. Number of Simulation Cycle that is used to set the number
of cycle per combination of cloud and its variation. It is important to obtain the mean value. Value
Assignment that is required to set when to assign the generated random values into the behavioral model
specification, either during the creation of model specification, or during the creation of a model instance.
This parameter is relevant for the user to explore the performance of synthesis in relation to the values
assignment stage. Finally, Objective Properties with three objectives, specifically, cost, time, and reliability.
We choose these three objectives since they are commonly used to evaluate the quality goals of self-adaptive
systems, e.g. [24, 25]. For each objective, the system user can define the threshold values and its comparator
symbol (i.e. $<, >, = $).

Besides that, there are three main buttons for executing the core functionalities. Execute button
to perform the synthesis-driven method for a set of simulation cycle. For each cycle, it generates a decision
behavioral model specification as shown in Figure 3 and multi-objective properties specification.
The generation takes the configuration parameters defined earlier. Then, the model checking is performed
which produces the state-transition and strategies profile. In general, the state-transition profile contains all
possible paths that can be executed by the decision maker. Meanwhile, the strategy profile contains
the selected path(s) that can satisfy multi-objective properties as shown in Figure 4. Transition and Strategy
graph button to map the data in the state-transition and strategies profile into a graph visualization.

Example of graph visualization for strategies profile is illustrated in Figure 5 (note: the state-
transition graph is not shown in this paper). It represents the exploration for a decision maker which leads to
the goal state. It contains the selected and explored paths as a subset of the state-transition profile. The states
from both files are mapped to the nodes, whilst the transitions (i.e. the action) are mapped to the edges.
From the sample of strategies graph, it illustrates four nodes and four transitions. State 0 is the initial state of
the decision maker, and State 4 is determined as the goal state. The exploration begun with choosing Cloud 0
(labeled as r0), and resulted in moving to State 7. Then, it had explored two branches. One of the branches (a)
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was to State 1 by choosing timeslot 0 (labeled as rs0) of Cloud 0 (labeled as n0). However, this branch was
expected to fail and thus the exploration moved back to State 7. Another branch (b) was to State 4 by
choosing timeslot 1 (labeled as rs1) of Cloud 0 (labeled as n0). State 4 is actually the goal state. This means,
the selection of branch (b) at runtime can lead to a successful adaptation. Furthermore, as a system user,
we can conclude that Cloud 0 is the best option based on the defined configuration if the application to be
migrated and deployed executes within timeslot 1.

19Z1C =:Ua JOOO 77481, 77TEL

- ES
153|const int n4rs3_time = 850; //time =
154| const double n4drs3 res = 0.3401740479962477; //time
155
156
157|//=========Global Parameters=======
158|global t:[0..1] init 0; //to control the turn
159|global goal : bool init false; //(absorbing state)
160|global n:[-1..MXN] init -1; //number of computing node
161
162|//=========Module for Player l=======
163|module planner
164|//P1's coordinator :
165| [end] (t=0) & (goal=true) -> true; //to end the selection
166|//P1 moves :
167|[r0] (t=0) & (goal=false) -> (n'=0) & (t'=1);

168 [rl] (t=0) & (goal=false) -> (n'=l) & (t'=l);

169| [r2] (t=0) & (goal=false) -> (n'=2) & (t'=1);

170|[r3] (t=0) & (goal=false) -> (n'=3) & (t'=l);

171| [r4] (t=0) & (goal=false) -> (n'=4) & (t'=1);

172| endmodule |

173 Z

174|//=========Module for Player 2=======

175|module environment

176|//P2 moves for single or sequential pattern:

177| [nOrs0] (t=1) & (n=0) & (app_rs + nOrs0_res <= mx_rs) -> nOrs0O_rel: (goal'=true) &

178 [nOrsl] (t=1) & (n=0) & (app_rs + nOrsl_res <= mx_rs) -> nOrsl_rel:(goal'=true) &

179| [nors2] (t=1) & (n=0) & (app_rs + nOrs2_res <= mx_rs) -> nOrs2_rel: (goal'=true) &

180| [nOrs3] (t=1) & (n=0) & (app_rs + nOrs3_res <= mx_rs) -> nOrs3_rel:(goal'=true) &

181

182| [n1rs0] (t=1) & (n=1) & (app_rs + nlrsO_res <= mx_rs) -> nlrsO_rel:(goal'=true) &

183 [nlrsl] (t=1) & (n=1) & (app_rs + nlrsl_res <= mx_rs) -> nlrsl_rel:(goal'=true) &

184| [nlrs2] (t=1) & (n=1) & (app_rs + nlrs2_res <= mx_rs) -> nlrs2_rel:(goal'=true) &

185| [nlrs3] (t=1) & (n=1) & (app_rs + nlrs3_res <= mx_rs) -> nlrs3_rel:(goal'=true) & |
| »

Figure 3. Sample of decision behavioral model based on SMG models in PRISM games model checker
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Figure 4. Text-based synthesized strategy
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strat.txt - =] x

Figure 5. Visualization of synthesized strategy

Finally, Generate chart button that is used to aggregate the performance data collected for each
simulation cycle. Then, a chart is visualized such as shown in Figure 6. In this figure, it presents three lines
of data distribution, where each line represents the synthesis mean time of a specific variation number
with increasing number of clouds. As presented in the chart, the higher number of variation with higher
number of cloud takes longer time. In addition, we can also notice unusual pattern from the chart.
For instance, the mean time of synthesis at four variation is taking a bit longer when there are four clouds
as compared to five clouds. This situation may be caused by re-synthesizing cycle due to unsatisfactory
of specified multi-objectives. As another example, we can see the minimum mean time of two clouds at four
variation as compared to two and three variation. This condition may be due to having more options
for making the decision that reduces the need for re-synthesizing and results in less synthesis time.

Synthesis Performance

5,000
o 4000
£
= 3.000
&
o 2,000
=

1,000

2.0 2.5 3.0 3.5 4.0 4.5 S.0
No. of Cloud

I-I- NoOfvar: 2 NoOfvar: 3 -4 NoOfVar: 4|

Figure 6. Sample of performance chart

5. CONCLUSION

We have presented a GUI-driven prototype for supporting the synthesis of self-adaptation decision
in the autonomic clouds environment. It allows the users to configure certain parameters, execute simulation,
generate performance chart, and explore the synthesis outcomes via graph visualization. The current
limitation of the prototype can be viewed from two aspects, namely, the assessment scenario,
and the functionality. In terms of assessment scenario, it is currently meant for the cloud application
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deployment problem. Furthermore, it only limits to the synthesis-driven for self-adaptation decision.
Hence, further study can focus on generalizing the problem as coordination problem of collective
self-adaptive systems that involves decentralized decision making. From the functionality perspective,
it currently limits the number of properties to three objectives. In addition, the graph visualization does not
store the state-transition and strategies profile for each simulation cycle of each configuration.
These limitations can be extended depending on the needs and can be taken as future work.

Despite the limitation, we believe that this prototype opens for more opportunities to be enhanced
to support the investigation and exploration of self-adaptation decision process. The short term enhancement
include to provide a flexibility in defining different number of objective properties, and to allow a predefined
model and properties to be imported into the prototype environment, besides the one that can be generated
automatically. The long term enhancement may include the ability to execute different synthesis techniques
with learning ability for investigating the behavior of self-adaptation decision.
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