Comparative analysis on bayesian classification for breast cancer problem

Wan Nor Liyana Wan Hassan Ibeni, Mohd Zaki Mohd Salikon, Aida Mustapha, Saiful Adli Daud, Mohd Najib Mohd Salleh

Faculty Computer Science & Information Technology, Universiti Tun Hussein Onn Malaysia, Malaysia

Article Info

Article history:

Received Apr 30, 2019 Revised Jun 20, 2019 Accepted Jul 6, 2019

Keywords:

Bayesian classification Breast cancer Supervised learning

ABSTRACT

The problem of imbalanced class distribution or small datasets is quite frequent in certain fields especially in medical domain. However, the classical Naive Bayes approach in dealing with uncertainties within medical datasets face with the difficulties in selecting prior distributions, whereby parameter estimation such as the maximum likelihood estimation (MLE) and maximum a posteriori (MAP) often hurt the accuracy of predictions. This paper presents the full Bayesian approach to assess the predictive distribution of all classes using three classifiers; naïve bayes (NB), bayesian networks (BN), and tree augmented naïve bayes (TAN) with three datasets; Breast cancer, breast cancer wisconsin, and breast tissue dataset. Next, the prediction accuracies of bayesian approaches are also compared with three standard machine learning algorithms from the literature; K-nearest neighbor (K-NN), support vector machine (SVM), and decision tree (DT). The results showed that the best performance was the bayesian networks (BN) algorithm with accuracy of 97.281%. The results are hoped to provide as base comparison for further research on breast cancer detection. All experiments are conducted in WEKA data mining tool.

Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Mohd Zaki Mohd Salikon, Faculty Computer Science & Information Technology, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Batu Pahat, Johor, Malaysia. Email: mdzaki@uthm.edu.my

1. INTRODUCTION

Breast cancer is the top number one cancer in Malaysia. The statistic shows that 1.6 million new cases are diagnosed worldwide and 2,015,560 women will die of breast cancer every year. This information is sourced from the World Health Organization (WHO) and National Cancer of Malaysia [1]. Statistics from Malaysian Study on Cancer Survival (MySCAN) published by Ministry of Health in September 2018 has shown a total of 17009 patient suffering from breast cancer with 7372 death reported. Age group of 45-54 years old (34.9%) make up the largest patient and 75 years old and above (3.9%) is the smallest group of patient.

According to the National Breast Cancer Foundation [2], there are two type of tumors: malignant (cancerous) and benign (non-cancerous). The cancerous tumors aggressively invade and damage surrounding tissues. The malignant tumors have three grades to differentiate, where the lowest grade of malignant tumor is well differentiated while the highest grade is poorly differentiated. High grade tumors highly resemble healthy cells and have higher tendency to be aggressive. There is no exact symptom can accurately diagnose the cancer but breast cancer has symptom like swelling at some part or the entire breast, dimpling or skin irritation, breast or nipple pain, thickening or retraction of nipple, nipple discharge and lump in the underarm

1304 🗖 ISSN: 2302-9285

area. Breast cancer on male is rare but born as a male is not an exception to the risk of having breast cancer. The risk of cancer is about 1 in 1000.

Breast cancer research falls under the category of medical, which as in other fields, use data mining to analyze past experiences and identify trends and solutions to the present situations [3]. Data mining is well-known analytical methodology to extract such invaluable information and is especially efficient to work with large volume of medical data [4]. The methodology varies from predictive models that enable classification and prediction as well as clustering models that for discovering groups or patterns from data [5]. Salama et al. [6] compared five different classifiers using three different breast cancer datasets. The chosen classifiers were Naïve Bayes (NB), Multi-Layer Perception (MLP), Decision Tree (J48), Instance-based for K-Nearest Neighbor (IBK), and Sequential Minimal Optimization (SMO). Along the line, Aruna et al. [7] investigated the performance of different classification algorithms similar to [6], which were Naïve Bayes and Decision Tree J4 as well as new algorithms such as the Support Vector Machines, Radial Basis Neural Networks, and and simple Classification and Regression Trees (CART). Meanwhile, Bashir et al. [8] proposed a feature selection component to classification problem while maintaining conventional classification algorithms such as the Decision Tree, Bayesian algorithms, Rule-based algorithms, Neural Networks, Support Vector Machines, Associative classification, Distance-based methods, and Genetic algorithms.

Following previous research, this work used breast cancer datasets obtained from UCI Machine Learning Repository from [9], which are Breast Cancer [10], Breast Cancer Wisconsin [11], and Breast Tissue [12]. This paper presents comparative analysis on the performance of three classification algorithms, which are the Naïve Bayes (NB) [13], Bayesian Networks (BN), and Tree Augmented Naïve Bayes (TAN) [14] as well as with algorithms from the existing literature such as K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Decision Trees (DT) based on breast cancer dataset. Following [15], this paper will be using accuracy, precision, recall and F-measure for evaluation [16]. These standard measures have significantly higher correlation with human judgments and an intuitive interpretation. NB classifiers improved accuracy with high speed [17-19]. The results showed that the NB classifier provides better performances [20-21]. The accuracy, sensitivity and specificity up to 90% and above [22]. Dian E. R., Nurizal D. P. & Machsus Machsus [23] is promising and able to enhance the prediction on Breast Cancer Wisconsin data.

The rest of the paper is organized as follows. Section 2 describes the research methodology and the proposed classification approach on dataset for finding the best performance of algorithm. Section 3 shows the experimental results and finally Section 4 concludes the work and highlights a direction for future research.

2. RESEARCH METHOD

This section presents a data mining approach for a classification problem. A data mining process that describe about data mining approach to tackle the problem. This methodology is implement to get the best result from the classification experiment. In this, research using Knowledge Discovery in Database (KDD) from [14] as model methodology. There are important phases that have to get the best result at the research. There are five phase in KDD which are Selection, Preprocessing, Transformation, Classification and Evaluation. Figure 1 shows the KDD model. Based on Figure 1, KDD model is an iterative process when evaluation measures can be enhanced. The detail of each phase is discussed in the next sub-sections.

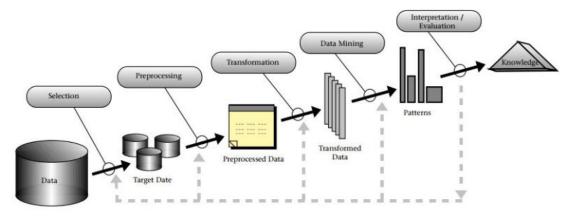


Figure 1. KDD model [14]

2.1. Dataset selection

This research used three breast cancer dataset was obtained from UCI machine learning repository from Brown [9], which are breast cancer (WDBC), wisconsin breast cancer (WBC), and breast tissue. The Breast Cancer Wisconsin dataset contains 699 instances with two classes that are benign and malignant. The benign class contains 458 instances while the malignant contains 241 instances. Breast cancer contains 10 attributes; which are sample code number, clump thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and mitoses. The excerpt of the dataset is shown in Figure 2.

ISSN: 2302-9285

sample code number	clump thickness	uniformity of cell size	uniformity of cell shape	marginal adhesion	single epithelial cell size	bare nuclei	bland chromatin	normal nucleoli	mitoses	class
1000025	5	1	1	1	2	1	3	1	1	benign
1002945	5	4	4	5	7	10	3	2	1	benign
1015425	3	1	1	1	2	2	3	1	1	benign
1016277	6	8	8	1	3	4	3	7	1	benign
1017023	4	1	1	3	2	1	3	1	. 1	benign
1017122	8	10	10	8	7	10	9	7	1	malignant
1018099	1	1	1	1	2	10	3	1	1	benign
1018561	2	1	2	1	2	1	3	1	1	benign
1033078	2	1	1	1	2	1	1	1	5	benign
1033078	4	2	1	1	2	1	2	1	1	benign
1035283	1	1	1	1	1	1	3	1	1	benign
1036172	2	1	1	1	2	1	2	1	1	benign
1041801	5	3	3	3	2	3	4	4	1	malignant
1043999	1	1	1	1	2	3	3	1	1	benign
1044572	8	7	5	10	7	9	5	5	4	malignant
1047630	7	4	6	4	6	1	4	3	1	malignant
1048672	4	1	1	1	2	1	2	1	1	benign
1049815	4	1	1	1	2	1	3	1	1	benign
1050670	10	7	7	6	4	10	4	1	2	malignant
1050718	6	1	1	1	2	1	3	1	1	benign

Figure 2. Breast cancer wisconsin (BCW) dataset

The breast cancer dataset contains 286 instances with two classes that are recurrence-events and no-recurrence-events. The recurrence-events class contains 85 instances while the no-recurrence-events contains 201 instances. This dataset contains nine attributes, which include age, menopause, tumor-size, inv-nodes, node caps, deg-malig, breast, breast-quad, and irradiat. The excerpt of the dataset is shown in Figure 3.

age	menopause	tumor-size	inv-nodes	node-caps	deg-malig	breast	breast-quad	irradiat	Class
40-49	premeno	15-19	0-2	yes	3	right	left_up	no	recurrence-events
50-59	ge40	15-19	0-2	no	1	right	central	no	no-recurrence-events
50-59	ge40	35-39	0-2	no	2	left	left_low	no	recurrence-events
40-49	premeno	35-39	0-2	yes	3	right	left_low	yes	no-recurrence-events
40-49	premeno	30-34	3-May	yes	2	left	right_up	no	recurrence-events
50-59	premeno	25-29	3-May	no	2	right	left_up	yes	no-recurrence-events
50-59	ge40	40-44	0-2	no	3	left	left_up	no	no-recurrence-events
40-49	premeno	Oct-14	0-2	no	2	left	left_up	no	no-recurrence-events
40-49	premeno	0-4	0-2	no	2	right	right_low	no	no-recurrence-events
40-49	ge40	40-44	15-17	yes	2	right	left_up	yes	no-recurrence-events
50-59	premeno	25-29	0-2	no	2	left	left_low	no	no-recurrence-events
60-69	ge40	15-19	0-2	no	2	right	left_up	no	no-recurrence-events
50-59	ge40	30-34	0-2	no	1	right	central	no	no-recurrence-events
50-59	ge40	25-29	0-2	no	2	right	left_up	no	no-recurrence-events
40-49	premeno	25-29	0-2	no	2	left	left_low	yes	recurrence-events
30-39	premeno	20-24	0-2	no	3	left	central	no	no-recurrence-events
50-59	premeno	Oct-14	3-May	no	1	right	left_up	no	no-recurrence-events
60-69	ge40	15-19	0-2	no	2	right	left_up	no	no-recurrence-events
50-59	premeno	40-44	0-2	no	2	left	left_up	no	no-recurrence-events

Figure 3. Breast cancer (BC) dataset

The Breast Tissue dataset contains 106 instances with six classes that are Carcinoma (CAR), Fibro-adenoma (FAD), Mastopathy (MAS), Glandular (GLA), Connective (CON), and Adipose (ADI). The class Carcinoma (CAR) contains 21 instances, Fibro-adenoma (FAD) contains 15 instances, Mastopathy (MAS) contains 18 instances, Glandular (GLA) contains 16 instances, Connective (CON) contains 14 instances, and Adipose (ADI) contains 22 instances. Breast Tissue contains nine attributes that include

1306 □ ISSN: 2302-9285

impedivity (ohm) at zero frequency, phase angle at 500 KHz, high-frequency slope of phase angle, impedance distance between spectral ends, area under spectrum, area normalized by DA, maximum of the spectrum, distance between 10 and real part of the maximum frequency point, and length of the spectral curve. The excerpt of the dataset is shown in Figure 4.

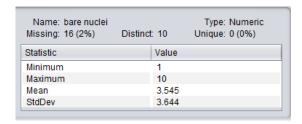

10	PA500	HFS	DA	Area	A/DA	Max IP	DR	P	Class
524.794072	0.187448362	0.032114058	228.8002279	6843.598481	29.91080273	60.20487976	220.737212	556.8283342	car
330	0.226892803	0.265290046	121.1542007	3163.239472	26.10920178	69.71736145	99.084964	400.225776	car
551.8792874	0.232477856	0.063529985	264.8049354	11888.39183	44.89490276	77.79329681	253.7852998	656.7694494	car
380	0.240855437	0.286233997	137.6401109	5402.17118	39.2485239	88.75844574	105.198568	493.7018135	car
362.8312659	0.200712864	0.244346095	124.9125594	3290.462446	26.34212655	69.38938904	103.8665519	424.7965034	car
389.8729777	0.150098316	0.097738438	118.6258143	2475.557078	20.86862032	49.75714874	107.6861642	429.3857879	car
290.4551412	0.144164196	0.053058009	74.63506664	1189.545213	15.93815436	35.70333099	65.54132446	330.2672929	car
275.6773934	0.15393804	0.187797428	91.52789334	1756.234837	19.187974	39.30518341	82.65868215	331.5883017	car
470	0.213104702	0.225496539	184.5900566	8185.360837	44.34345484	84.48248291	164.1225107	603.3157151	car
423	0.21956242	0.261799388	172.371241	6108.106297	35.43576214	79.05635071	153.1729029	558.2745153	car
410	0.317824457	0.297404105	255.8151791	10622.54711	41.5243034	67.52320862	246.7428255	508.540356	car
500	0.227241869	0.050963614	219.2955023	9819.449614	44.77725039	76.86849976	207.2666404	602.5278406	car
438.7801572	0.21240657	0.060737458	120.9015964	4879.495576	40.35923198	80.79177856	89.94378642	525.4201494	car
366.9423791	0.280125345	0.252025544	172.7455537	7064.815909	40.89723733	75.60432434	155.3222849	471.5881954	car
485.6688055	0.230208928	0.134041287	253.8936986	8135.968359	32.04478254	64.85544586	245.4705306	541.3639751	car
390	0.358316095	0.203854457	245.6861031	10055.83687	40.929612	70.32478333	236.4901697	477.54836	car
269.4959463	0.207519648	0.038397244	80.41108548	1963.605248	24.4195839	44.74015427	66.83830932	329.0906471	car
300	0.190066356	0.166853476	97.10812951	3039.561303	31.30079138	51.35397339	82.41819203	387.0782275	car

Figure 4. Breast tissue (BT) dataset

2.2. Preprocessing

The types of the breast cancer wisconsin dataset are categorized as asymmetric. It means they are class breast cancer dataset represented using into categories benign or malignant. The attributed value of breast cancer dataset not completely record. That have only one attribute have missing values which are Bare Nuclei that have 2% of missing value are denoted by "?". To handle the missing value in machine learning is one of the important things to get the best accuracy.

In this paper imputation is a way of handling missing value by replacing them with meaningful replacement values. Since 'Bare Nuclei' is a categorical attribute, this experiment has use to handling the missing values of the attribute. Based on the breast cancer dataset given the mode for the attribute 'Bare Nuclei' is'1-10' since it has the maximum value which is 10. Figure 5 and Figure 6 show the before and after dealing the missing value.

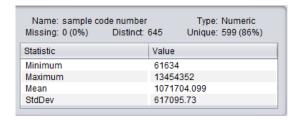


Figure 5. Before dealing with missing values

Figure 6. After dealing with missing values

2.3. Transformation

The breast cancer dataset is divided into training and testing sets based on 10-fold validation method where nine parts is for training the algorithm and the last one part for assessing the algorithm. This breast cancer dataset will be using accuracy estimation because this is effective measure of the performance of a classifier. Figure 7 shows the procedure of accuracy rate estimation adopted from Mitani and Hamamoto [24].

Figure 7. Accuracy rate estimation [24]

2.4. Classification algorithms

In this work, there Bayesian classification algorithms explored, which are the Naïve Bayes (NB), Bayesian Networks (BN), Tree-Augmented Naïve Bayes (TAN).

Naive Bayes (NB) algorithm is one type of probabilistic classifier based on the Bayes theorem. NB produces a probability that a given instance belongs to that class rather than prediction. One main advantage of NB is that it only requires small amount of training data because it is based on major assumption that an attribute value on a given feature is always independent from the values of other features. This assumption forms the basis of NB and is widely known as class conditional independence [25].

Bayesian Networks (BN) is a type of directed acyclic graph where the nodes represent domain variables and are connected with arcs that represent dependencies between the variables. BN is composed of the network structure and its conditional probabilities. Meanwhile, the Tree Augmented Naïve Bayes (TAN) incorporates some dependencies between the attributes by building a directed tree among the attribute variables. This means the n attributes will form a directed tree that represents the dependency relations between the attributes. This learning algorithm creates a TAN graph structure whereby a single class variable has no parents while other variables have the class as a parent or at most one other attribute as a parent.

Next, the results from Bayesian classification algorithms will be compared with K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) from the literature. K-Nearest Neighbor Algorithm (KNN) is an algorithm to classify the object based on the learning data that is closest to the object. There has two basic k-Nearest Neighbor Classification algorithm to be considered, (1) finding the k training instances that are closest to the unseen instances or (2) taking the most commonly accruing classification for these k instances. Using k is to reduce the effect of the presence of point noise. A number of neighbor making a decision is considered better than a single neighbor making a decision.

Support Vector Machine (SVM) is a classification technique used in the case of classification. SVM scans for the best hyper plane which serves as a separator of two classes in the input space, where the input data serve as a vector in an n-dimensional space. The hyper plane separation sets as margin to be as big as possible between both sets of data. The margin is calculated by constructing two parallel hyper-planes that separate between the two sets of data. In an obvious case, a good separation can be accomplished with a hyper-plane which has the largest distances to neighboring data points in both classes. This means the larger the low margin of error, the more generalized a classifier could be.

2.5. Evaluation metrics

The evaluation metrics used in the experiments are accuracy, precision, recall and F-measure. The equations respectively, where TP is the number of true positive, TN is the number of true negatives, FP is the number of false positive and FN is the number of false negatives.

a. Accuracy

Accuracy is total number of samples correctly classified to the total number of samples classified. The formula for calculating accuracy is shown in (1).

$$Accuracy = \frac{(TP+TN)}{(TP+TN+FP+FN)}$$
 (1)

b. Precision

Precision the number of samples is categorized positively classed correctly divided by total samples are classified as positive samples. The formula for calculating precision is shown in (2).

$$Precision = \frac{TP}{(TP+FP)}$$
 (2)

c. Recall

Recall is the number of samples is classified as positive divided by the total sample in the testing set positive category. The formula for calculating recall is shown in (3).

$$Recall = \frac{TP}{(TP+FN)}$$
 (3)

d. F-Measure

F-Measure. F-Measure is the weighted average of Precision and Recall. Therefore, this score takes both false positives and false negatives into account. The formula for calculating F-Measure score is shown in (4).

$$F - Measure = \frac{2*(Recall*Precision)}{(Recall+Precision)}$$
(4)

3. RESULTS AND DISCUSSION

The performance result for the breast cancer dataset, which by three algorithms is naïve bayes (NB), bayesian networks (BN), and tree augmented naïve bayes (TAN) has be implement by using Waikato Environment for knowledge analysis (WEKA) software. The performance result can trace the breast cancer benign or malignant is correctly or incorrectly classified. The accuracy of an algorithm can be obtained by comparing the accuracy of result related work and this using new algorithm in this research. Table 1 shows the accuracy and precision percentage for breast cancer dataset in different training and testing environment.

Table 1. Accuracy and precision for breast cancer dataset

Algorithm	Accuracy	Precision	Recall	F-measure (%)
	(%)	(%)	(%)	
KNN	94.992	96.943	95.483	96.207
SVM	96.852	97.161	98.017	98.591
DT(J48)	94.992	95.633	96.688	96.157
BAN	97.281	96.506	99.325	97.895
NB	95.994	95.196	98.642	96.888
TAN	96.280	95.851	98.430	97.123

The results showed that BN algorithm has the higher classification accuracy based on breast cancer dataset. BN has the highest value of accuracy, which is 97.281% while NB is only achieved 95.994% and TAN achieved 96.280%. The comparison the result of the related paper using other algorithm which is KNN only achieved 94.992%, SVM 96.852% and DT 94.992% of accuracy. This proven the BN algorithm is the best classification using breast cancer dataset.

Precision is the predictive value for a class label of whether positive or negative depending on the class it is calculated for. This is essentially the predictive power of the classification algorithm. Figure 8 shows precision of BN is 96.506%, higher than NB 95.994% and TAN 95.851%.

Next, recall is the fraction of relevant instances that are retrieved. A high recall value indicates that the classification algorithm is able to return most of the relevant results. Figure 9 shows BAN is higher recall, which is 99.325% as compared to the other algorithm NB with 98.642% and TAN with 98.430%.

Figure 8. Comparison of precision

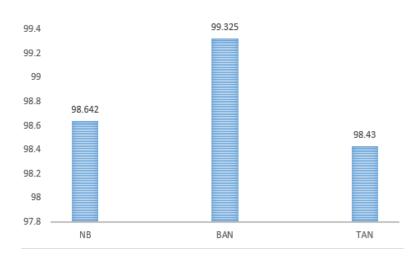


Figure 9. Comparison of recall

Finally, F-measure is a measure of accuracy that considers both the precision and the recall rate of the test and computes a composite score. A good score favors the algorithms with higher sensitivity and challenges algorithms with higher specificity. Based on the considerations, we can conclude that BN is preferable to NB and TAN. The F-measure for BAN is higher with 99.895% while NB 96.888% and TAN 97.123%. The results are shown in Figure 10.

To conclude the experiments, Table 2 shows the comparisons of the proposed Bayesian approach across all three datasets, which are breast cancer, breast cancer wisconsin, and breast tissue dataset and the result for breast cancer datasets with three classification algorithms.

Based on the table, BN algorithm has higher results than NB and TAN algorithm with the Breast Cancer and Breast Cancer Wisconsin dataset while than the second higher in the Breast Tissue dataset it because the attribute Breast tissue more to specification to tissue and that have many classes depend Breast Cancer and Breast Cancer Wisconsin have only two classes.

1310 □ ISSN: 2302-9285

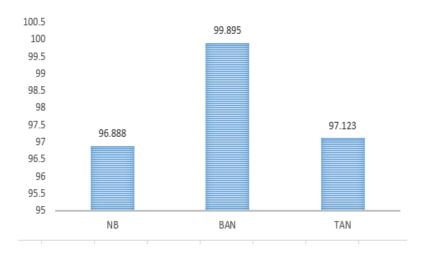


Figure 10. Comparison of F-measure

Table 2. Comparison across different datasets

Algorithm	Naïve Bayes (NB)	Bayesian Networks (BN)	Tree Augmented Naïve Bayes (TAN)
Breast Cancer Wisconsin	72.028%	72.377%	67.832%
Breast Cancer	95.994%	97.281%	96.280%
Breast Tissue	70.754%	66.037%	62.264%

4. CONCLUSION

Classification is an important technique of the data mining with applications in various fields. This paper presented a comparative experiment on different techniques evaluated on the breast cancer dataset. Six classifiers were compared based on accuracy to select the best result to be used in the classification task. The best result between three algorithm chose in this paper showed Bayesian Networks (BN) classification because has the highest accuracy which is 97.281%. Next, this paper also compared the performance of Bayesian algorithms based on different datasets, which are the Breast Cancer Wisconsin and Breast Tissue dataset to prove that BN algorithm has the best accuracy as compared to NB and TAN algorithms. In the present study few issue like high dimensionality, scalability and accuracy are to be considered for further research along with other algorithms not currently available in WEKA environment.

ACKNOWLEDGEMENTS

This research is supported by Universiti Tun Hussein Onn Malaysia.

REFERENCES

- [1] Malaysia Study on Cancer Survival (2018), available online http://www.moh.gov.my/resources/index/Penerbitan/Laporan/Malaysian_Study_on_Cancer_Survival_MySCan_20 18.pdf
- [2] Cancer Research Malaysia, 2016, available online http://www.cancerresearch.my/our-work/cancers
- [3] Fernández-Llatas, C., & García-Gómez, J. M. (Eds.), Data mining in clinical medicine, 2015, Humana Press.
- [4] Chen, J. H., Podchiyska, T., & Altman, R. B, "OrderRex: clinical order decision support and outcome predictions by data-mining electronic medical records," *Journal of the American Medical Informatics Association*, vol. 23, no. 2, pp. 339-348, 2015.
- [5] Dua, S., & Du, X., "Data mining and machine learning in cybersecurity". Auerbach Publications, 2016.
- [6] Gouda I. Salama, M. B. Abdelhalim, Magdy Abd-elghany Zeid, "Breast cancer diagnosis on three different datasets using multi-classifiers," *International Journal of Computer and Information Technology*, vol. 01, no. 01, pp. 36-43, 2012.
- [7] Aruna, S., Rajagopalan, S. P., & Nandakishore, L. V., "An empirical comparison of supervised learning algorithms in disease detection," *International Journal of Information Technology Convergence and Services–IJITCS*, vol. 1, no. 4, 81-92, 2011.
- [8] Bashir, S., Qamar, U., Khan, F. H., "IntelliHealth: a medical decision support application using a novel weighted multi-layer classifier ensemble framework," *Journal of biomedical informatics*, 59, pp. 185-200, 2016
- [9] Brown, G. (2004). Diversity in neural network ensembles (Doctoral dissertation, University of Birmingham).

- [10] Breast Cancer, Symptoms, Diagnosis, Types, and More, 2017, available online https://www.breastcancer.org/symptoms
- [11] William H. Wolberg, W. Nick Street, Olvi L. Mangasarian, "Breast Cancer Wisconsin (Diagnostic) Data Set," 2017, available online https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
- [12] Breast tumors (2017), available online https://www.nationalbreastcancer.org/breast-tumors
- [13] Megha, R., & Arun, K. S., "Breast Cancer Prediction using Naïve Bayes Classifier," *International Journal of Information Technology & Systems*, vol. 1; no. 2, July-Dec. 2012.
- [14] Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P., "From data mining to knowledge discovery in databases" AI magazine, vol. 17, no. 3, 37-54, pp. 1996.
- [15] Melamed, I. D., Green, R., & Turian, J. P., "Precision and recall of machine translation," In Companion Volume of the Proceedings of HLT-NAACL 2003-Short Papers, vol. 2, pp. 61-63, 2003.
- [16] Bazila, B., & Ponniah, T., "Comparison of Bayes Classifiers for Breast Cancer Classification," *Asian Pac J Cancer Prev.*, vol. 19, no. 10, pp. 2917–2920, 2018.
- [17] Shweta, K., Shika, A., Sunita, S., "Naive Bayes Classifiers: A Probabilistic Detection Model for Breast Cancer," *International Journal of Computer Applications*, vol. 92, no. 10, pp. 26-31, April 2014.
- [18] Diana, D., "Prediction of recurrent events in breast cancer using the Naive Bayesian classification," *Annals of University of Craiova, Math. Comp. Sci. Ser*, vol. 36, no. 2, pp. 92-96, 2009.
- [19] Rodríguez-López V., Cruz-Barbosa R., "On the Breast Mass Diagnosis Using Bayesian Networks. MICAI 2014, Part II, LNAI 8857," *Springer International Publishing Switzerland*, vol 8857, pp. 474–485, 2014
- [20] Khatija, A. & Shajun, N., "Breast Cancer Data Classification Using SVM and Naïve Bayes Techniques," International Journal of Innovative Research in Computer and Communication Engineering, vol. 4, no. 12, pp. 21167-21175, 2016.
- [21] Souad, D., "Mining Knowledge of the Patient Record: The Bayesian Classification to Predict and Detect Anomalies in Breast Cancer," *The Electronic Journal of Knowledge Management*, vol. 14, no. 3 pp128-139, 2016.
- [22] Maysanjaya, I. M. D., Pradnyana, I. M. A. & Putrama, I. M., "Classification of breast cancer using Wrapper and Naïve Bayes algorithms," *International Conference on Mathematics and Natural Sciences. Journal of Physics*: Conf. Series 1040, 2017.
- [23] Dian E. R., Nurizal D. P. & Machsus Machsus, "A Modified K-Means with Naïve Bayes (KMNB) Algorithm for Breast Cancer Classification," *Journal of Telecommunication, Electronic and Computer Engineering*, vol. 10, no.1-6, pp. 137-140, 2018
- [24] Mitani, Y., & Hamamoto, Y., "A local mean-based nonparametric classifier," *Pattern Recognition Letters*, vol. 27, no. 10, pp. 1151-1159, 2006.
- [25] Han, J., Pei, J., & Kamber, M., "Data mining: concepts and techniques", Elsevier, 2011.