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 As the main testbed platform of Artificial Intelligence, the robot plays an 

essential role in creating an environment for industrial revolution 4.0. 

According to their bases, the robot can be categorized into a fixed based 

robot and a mobile robot. Current robotics research direction is interesting 

since people strive to create a mobile robot able to move in the land, water, 

and air. This paper presents development of a quadruped mobile robot and its 

movement system using geometric-based inverse kinematics. The study is 

related to the movement of a four-legged (quadruped) mobile robot with 

three Degrees of Freedom (3 DOF) for each leg. Because it has four legs, the 

movement of the robot can only be done through coordinating the 

movements of each leg. In this study, the trot gait pattern method is proposed 

to coordinate the movement of the robot's legs. The end-effector position of 

each leg is generated by a simple trajectory generator with half rectified sine 

wave pattern. Furthermore, to move each robot's leg, it is proposed to use 

geometric-based inverse kinematic. The experimental results showed that the 

proposed method succeeded in moving the mobile robot with precision. 

Movement errors in the translation direction are 1.83% with the average pose 

error of 1.33 degrees, means the mobile robot has good walking stability. 
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1. INTRODUCTION 

As the main testbed platform of Artificial Intelligence, the robot plays an essential role in creating 

an environment for industrial revolution 4.0. According to their bases, the robot can be categorized into a 

fixed based robot and a mobile robot [1]. Fixed based robot is mainly used industry, in the form of robotic 

manipulator [2]. While mobile robot, due to its mobility, has broader application field. Such as in farming  

[3, 4], surveillance [5, 6], exploration [7, 8], and military [9, 10]. According to the environment in which they 

travel, the mobile robot can be categorized as an unmanned ground vehicle (UGV), unmanned aerial vehicle 

(UAV) and autonomous underwater vehicle (AUV). Furthermore, according to the device they used to move, 

UGV can be classified into a wheeled mobile robot [11] and legged mobile robot [12]. 

The first problem to be solved in a mobile robot is locomotion. It is about how the robot should 

move and how is the mechanism to move [1, 13]. The use of legs for robot mobility is inspired by the animal 

world. A mobile robot with six legs (hexapod) was reported as the first walking legged mobile robot, 

followed by the mobile robot with four legs (quadruped) around eight years later [14]. The hexapod robot has 
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advantageous of good static stability [15], while a quadruped robot has better speed and mobility compared 

to the hexapod robot [16].  

Since the robot has many legs, movement coordination through gait pattern is a must for smooth 

movement. Gait pattern is a repetitive pattern of each legs movement (translation or rotation) by the 

movement of the robot body so that the robot can move from one position to another position [14]. 

Simulation and experiment to get a gait pattern by Genetic Algorithm were given by [17]. Generation of gait 

pattern via central pattern generator (CPG) was proposed by [18, 19], and an adaptive approach of CPG was 

introduced by [20]. Integration of trot gait to CPG was presented by [21]; the combination of trot and walk 

gait was proposed by [22]. Analysis on the stability of generated trajectory by gait pattern was substantially 

discussed in [23, 24].  

Gait pattern is a guideline to generate a trajectory for the leg tip of the mobile robot [25]. In this 

paper, we propose to use half rectified sine wave to generate trajectory guided by a simple trot gait. Since this 

trajectory must be followed by the tip of the robot’s legs (end effector), it is necessary to employ an inverse 

kinematic method to provide joint angle given end effector trajectory. As inverse kinematic method, we 

propose to decompose the inverse kinematics geometrically into a more straightforward calculation. 

 

 

2. RESEARCH METHOD  

There are two purposes for this research. First is to build a legged mobile robot capable of exploring 

an indoor environment and the second is to design a control system for the movement. A mobile robot 

comprises of sensors, processor and locomotion system. Sensors provide information surrounding 

environment. This information proceeds by the processor and action are decided accordingly. For a mobile 

robot, the decision is about robot movement, provided by the locomotion system. Mobile robot realization 

consists of building stage and testing stage. The robot building steps consist of mechanical part building and 

electronic part building. Testing steps consist of mechanical functionality test and electrical functionality test 

(including sensor and actuator linearity test). The robot building will be reported in this section, while the 

testing step will be reported in section 3. 

Mobile robot movement is designed by path planning and response of sensory information. 

According to the mobile robot movements method, there are two main categories, wheeled mobile robot and 

legged mobile robot. The legged mobile robot is classified according to the number of legs for movement and 

degrees of freedom for each leg. This research is focused on a four-legged mobile robot with three degrees of 

freedom (3 DOF) for each leg. The detail on robot movement design will be described in this section. 

 

2.1.  Robot mechanical design 

Figure 1 depicts the mechanical design of the mobile robot base. Robot center represented by the 

white circled area in robot base. Servo motor positions are arranged uniformly so that the robot able to turn 

90º or 180º without changing the position of the body, just by changing the movement direction. The 

horizontal distance among servos is 9.405 cm, and the distance among servos will be 13 cm if measured 

crossing the center. This servos arrangement is decided in order to give enough space for a 220 mAh 

Lithium-Polymer (Lipo) battery and to give free movement for each leg. Using this construction also enable a 

designer to add a spacer for strengthening robot structure.  

Leg construction is shown in Figure 2. This leg is a 3 degree of freedom (3DOF) body comprises of 

3 servo motors, namely coxa servo, femur servo, and tibia servo. These part names are originally the names 

an arthropod leg parts. From Figure 2, the length of the femur (length_femur) is 4 cm while the length of the 

tibia (length_tibia) is 5, 6 cm. Coxa servo rotational axis is intersecting with the rotational axis of femur 

servo, setting zero offsets for coxa servo. While rotational servo of tibia and femur are parallel to each other 

(as shown in Figure 2(a)), these mechanical setting will be essential parts for the derivation of  

geometric-based inverse kinematic. Angle measurement is defined in Figure 2(b). Femur and tibia angle are 

measures according to an axis connecting the rotational axis of femur and tibia. This definition will further 

simplify the calculation of inverse kinematics. 
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(a) (b) 

  

Figure 1. Mechanical design of the mobile robot base, (a) Base frame only, (b) Base frame with leg position 

 

 

 
 

Figure 2. Mechanical configuration of robot leg, (a) Rotational direction, (b) Angle measurement of femur 

and tibia 

 

 

2.2.  Robot electronics design 

Figure 3 shows the electronics of the robot. As depicted in Figure 3(a), an STM32F407VGT6 is 

employed the main microcontroller for the system. The microcontroller is connected to the servos (12 units 

of Dynamixel AX 12A) via 74LS241 Tri-state buffer to ensure the servos received half-duplex signal needs 

for their movement. The microcontroller receives outside information from HC SR04 ultrasonic rangefinder 

sensor (provides distance to the object in front of the sensors) and CMPS11 attitude sensor (provides pitch, 

roll, and yaw orientation of the robot). The robot can be controlled via a push button or PC serial instruction 

via Bluetooth. Figure 3(b) shown the electronics part arranged in a single board and Figure 3(c) shows the 

assembled electronic parts.  
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(c) 

  

Figure 3. Electronic parts of the robot, (a) Diagram of the electronic system, (b) The electronic board, (c) 

Assembled electronic parts 

 

 

2.3.  Design of mobile robot movement 

The legged mobile robot developed in this research has four legs with 3 degrees of freedom each. 

Hence it has 12 degrees of freedom (12 DOF). There are two problems to be solved for robot movement. 

First, how to coordinate legs for forwarding, backward, left and right movement. Second, given tibia tip 

position on how to determine coxa, femur and tibia angle. The answers for the first question lead to the 

generation of tibia tip trajectory, and the answer for the second question leads to the inverse  

kinematic formulation. 

Constrain of robot movement is in its workspace. The workspace could be analyzed by moving the 

joints step by step for all possible angle combination. Workspace determination is particularly crucial for 

trajectory generation so that the algorithm only generate a reachable position of end effector (tibia tip 

position). The robot in this research reach a position in X-Y space by changing the angle of coxa joint and 

reach a position in X-Z space by changing femur and tibia angle. Figure 4 shows the workspace of these  

two spaces. 
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(a) (b) 

  

Figure 4. Leg workspace in X-Y space and X-Z space 

 

 

Legged-robot movement is performed according to a gait pattern. Gait pattern is a movement pattern 

of each leg which is coordinated with the body movement of the robot both translation and rotation which is 

done repetitively so that the robot's body can move from one place to another [14]. The gait pattern 

implemented in this study is trot gait. Trot gait is a movement pattern using two legs in the diagonal plane 

with each other to swing the leg (swing phase), while the remaining two legs are responsible for supporting 

the quadruped robot (support phase). Figure 5 illustrates the trot gait pattern used in this study. The distance 

traveled by each leg is identical between one leg and the other leg. In one movement cycle, each leg will 

experience one swing phase and one support phase with timings according to what can be seen in Figure 5. 

For smooth movement, a trajectory generator is added to trot gait pattern. Trajectory generator provides a 

smooth transition of end-effector trajectory from starting point to end point. We proposed to use half rectified 

sine wave for this purpose. Figure 6 illustrates the trajectory generated by half rectified sine wave combined 

with trot gait pattern. 

The coordinates generated by the trajectory generator should be converted to angle movement 

commands for each joint. These angle movement commands are provided by inverse kinematics calculation. 

For simplicity, the inverse kinematics of 3 DOF robot leg decomposed into two sub-problems, inverse 

kinematics for coxa joint (1 DOF) and inverse kinematic for femur-tibia joint (2 DOF). Figure 7 depicts the 

kinematics of coxa joint. Without loss of generality, it is assumed that each leg is parallel with the center of 

the robot, hence  = 90. Hence, the angle of the coxa joint (     ) is; 

 

            

 
 (1) 

 

 

 
 

Figure 5. Trot gait pattern 
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Figure 6. End-effector trajectory generated from the combination of trot gait and half rectified sine wave 

 

 

Figure 8 shows the inverse kinematics for the femur-tibia joint (2 DOF). The femur length 

(length_femur) and tibia length (length_tibia) are constants. These constants will further simplify the angles 

calculation in (2) and (3). The inverse kinematic calculation in (1)-(3) in for right side legs, the solution for 

the left side legs can be generated accordingly by flipping the angle direction. 

 

             
                                 

                           
  (2) 

 

             
                                 

                           
  (3) 

 

 

  
  

Figure 7. Kinematics problem of coxa joint Figure 8. The kinematic problem of femur-tibia joint 

 

 

2.4.  Experimental design 

In this study, the performance of the mobile robot movement using the proposed scheme will be 

tested. Without loss of generality, only forward movement (in the Y direction) will be considered. The 

movement of the mobile robot is considered reasonable if the robot's final position is as desired and the 

attitude of the robot remains in a state of equilibrium. Robot state of equilibrium is measured using a tilt 
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sensor (CMPS11 sensor) which is returned pitch, roll, and yaw orientation of the robot. Figure 9 shows the 

experiment scenario for movement performance. 

 

 

 
 

Figure 9. Experiment scenario for movement performance 

 

 

3. RESULTS AND ANALYSIS 

In this experiment, the mobile robot is moving in a lateral direction toward the wall at a certain 

distance. Table 1 shows the mobile robot performance of forwarding movement. Label “FM” in the first 

column means forward movement traveled by mobile robot toward the wall. The “Error..” in column 2 until 

11 is the subtraction of lateral position (in Y-axis) to the set point (herein equals 0). While the last two 

columns are an average error for each distance toward the wall. Taking the average of the last column we got 

the average error rate is 1,83%, which is considerably small. 

Next experiment is a concern with walking stability. It is hoped that the robot moves while 

maintaining its pose. A tilt sensor is used for this purpose. The sensor measured yaw, pitch and roll 

difference to the reference. Table 2 summarizes the experimental results. As in Table 1, Label “FM” in the 

first column means forward movement traveled by mobile robot toward the wall. From the table, it is 

understood that pose error also considerably small, just around 1.33 degrees. It could be concluded that 

walking stability is good. 

 

 

Table 1. Performance of forward movement 
FM 

(cm) 

Error in each experiment (cm) Avg 

(cm) 

Avg 

(%) 1 2 3 4 5 6 7 8 9 10 

5 0.05 -0.12 -0.36 -0.16 0.05 -0.45 -0.21 0.12 -0.39 0.09 -0.14 2.75 

10 -0.14 0.28 0.43 0.60 0.10 -0.02 0.29 0.70 -0.29 -0.43 0.15 1.53 
15 0.22 -0.96 0.64 -0.05 0.07 0.60 -0.02 -0.31 -0.52 -0.72 -0.11 0.69 

20 -0.39 0.33 -0.67 -0.86 -0.55 -0.95 -0.89 -0.22 0.67 0.21 -0.33 1.67 

25 -0.93 -0.43 -0.10 -0.63 -0.12 -0.41 0.01 -0.52 -0.96 -0.16 -0.42 1.69 
30 -0.67 -0.49 -0.72 -1.53 -0.22 -1.60 -0.93 -1.05 -0.43 -0.26 -0.79 2.63 

Average 1.83 

 

 

Table 2. Pose stability experiment results 
FM (cm) Yaw Pitch Roll Average Error (deg) 

5 2.8 -0.548 0 0.750667 

10 5.2 -0.352 0.167 1.671556 

15 3.9 -0.452 0 1.149333 
20 0.2 -0.048 0 0.050667 

25 5.6 -0.816 0.667 1.816889 

30 7.8 -1.152 1 2.549333 
Average 1.331407 

 

 

4. CONCLUSION 

This paper presents development of a quadruped mobile robot and its movement system using 

geometric-based inverse kinematics. The trot gait pattern method is proposed to coordinate the movement of 

the robot's legs, while the end-effector position of each leg is generated by a simple trajectory generator with 

half rectified sine wave pattern. Furthermore, to move each robot's leg, it is proposed to use geometric-based 

inverse kinematic. The experimental results showed that the proposed method succeeded in moving the 

mobile robot with precision. Movement errors in the translation direction are 1.83% with the average pose 

error of 1.33 degrees, means the mobile robot has good walking stability 
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