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 Energy efficiency is crucial for radio frequency identification (RFID) 

systems as the readers are often battery operated. The main source of the 

energy wastage is the collision which happens when tags access the 

communication medium at the same time. Thus, an efficient anti-collision 

protocol could minimize the energy wastage and prolong the lifetime of the 

RFID systems. In this regard, EPCGlobal-Class1-Generation2 (EPC-C1G2) 

protocol is currently being used in the commercial RFID readers to provide 

fast tag identification through efficient collision arbitration using the Q 

algorithm. However, this protocol requires a lot of control message 

overheads for its operation. Thus, a reinforcement learning based  

anti-collision protocol (RL-DFSA) is proposed to provide better time system 

efficiency while being energy efficient through the minimization of control 

message overheads. The proposed RL-DFSA was evaluated through 

extensive simulations and compared with the variants of EPC-Class 1 

Generation 2 algorithms that are currently being used in the commercial 

readers. The results show conclusively that the proposed RL-DFSA performs 

identically to the very efficient EPC-C1G2 protocol in terms of time system 

efficiency but readily outperforms the compared protocol in the number of 

control message overhead required for the operation. 
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1. INTRODUCTION  

Radio frequency identification (RFID) is a technology that uses radio waves for the purpose of 

identifying a large number of goods in a swift manner. This technology has widespread acceptance in various 

fields of applications such as inventory management, logistic, retailing and dairy farms [1]. A typical RFID 

setup has at least one reader with numerous RFID tags. RFID tags are classified into passive or active tags 

depending on the availability of a power source on them. A passive tag gets its power from the RF signal of 

the reader while an active tag has its own battery. Thus, the communication range of an active tag is much 

longer as compared to the passive tags. Despite having clear disadvantage in communication distance, 

passive tags are largely favored due to the advantages of low deployment cost and longer lifetime. Hence, we 

consider only an RFID system with a reader and numerous passive tags in this paper. Also, reader-to-reader 

interference is out of the scope of this paper. 

RFID tags communicate with the reader using a shared communication channel. Thus, collisions are 

inevitable when multiple tags try to communicate their ID at the same time to the reader [2]. This problem is 

particularly challenging since medium access schemes like frequency division multiple access (FDMA) or 

code division multiple access (CDMA) are cannot be implemented due to the computational limitations of 

the passive tags. Therefore, the burden of alleviating collisions in the network falls on the reader. There are 



Bulletin of Electr Eng and Inf ISSN: 2302-9285  

 

Energy efficient anti-collision algorithm for the RFID networks (Murukesan Loganathan) 

623 

numerous collision arbitration protocols available in the literature for the RFID systems. Among those 

protocols, Framed Slotted Aloha (FSA)-based protocols are popular and are being used extensively in RFID 

standards due to the simplicity and good performance [3, 4]. FSA protocol is probabilistic in nature in which 

tags select a random slot to send their ID. Besides, in FSA, tags won’t check the channel to see whether it is 

busy or free before start transmitting their own ID. The usage of random transmission strategy with time slots 

reduces the collision probability in this protocol. Current RFID standard, EPCGlobal Class 1 Generation 2 

(EPC-C1G2) uses a variant of FSA for its operation [3]. 

The EPC-C1G2 protocol is used extensively in current generation commercial RFID devices since it 

is the defacto standard of the industry. Simplicity and high throughput of the algorithm helped in its rapid 

adoption in the industry. However, EPC-C1G2 generates a high amount of control messages which increases 

the energy consumption [5]. Despite the shortcoming, EPC-C1G2 is still favored as an efficient anti-collision 

algorithm (ACA) thanks to its high time system efficiency (TSE) as shown in Figure 1. Therefore, in this 

paper, we present an efficient ACA namely, reinforcement learning based dynamic frame slotted Aloha  

(RL-DFSA) which can perform as good as EPC-C1G2 protocol without the need for large number of control 

message exchanges. The performance of the proposed algorithm (RL-DFSA) was evaluated using  

Monte-Carlo simulations (5000 iterations) and compared with algorithms that are currently being used in 

commercial settings. RL-DFSA is very efficient in identifying tags as exhibited by its high TSE metric and 

requires one order of magnitude lesser message exchanges than that of the best performing algorithm in the 

commercial readers.  

The remainder of this paper is organized as follows. Section 2 discusses the current RFID standard 

and related works. In Section 3, the complete methodology of the proposed RFID anti-collision protocol is 

presented in detail. Section 4 presents results and discussion of the proposed protocol in relation to selected 

protocols from the literature. Finally, the paper concludes with concluding remarks and future works in 

Section 5. 

 

 

2. BACKGROUND INFORMATION AND RELATED WORKS 

2.1. Primer on FSA and Q-Algorithm 

In FSA, a frame is divided into slots of same length [6]. At the beginning of each frame, interrogator 

or reader broadcasts the frame size to the tags. The tags then select a slot randomly and send the ID 

information to the reader in that slot. Due to this random slot selection policy, excessive collisions are bound 

to happen depending on the tag population if a non-optimal frame size is selected by the reader. The average 

throughput,   of FSA for N tag population and frame size   is: 
  

U N 1-
1

L
 
N-1

 (1) 

 

and the normalized throughput, Unorm is given by: 
 

Unorm 
N

L
 1-

1

L
 
N-1

 (2) 

 

The normalized throughput is maximized when    . However, readers are not privy of the tag 

population and FSA has a fixed frame size. Due to these limitations, a variant of FSA called dynamic frame 

slotted aloha (DFSA) which adapts frames dynamically based on the backlog tag estimation was proposed in 

the literature [7]. However, its throughput drops significantly as the number of tags increases. Thus,  

Q-algorithm, a variant of DFSA was employed instead in the current generation RFID standard. 

Q algorithm operates using two parameters, namely, a floating-point parameter,     and   . The 

round     value is used to set the frame size,   and the    is used to increase or decrease the     value in the 

event of collision or empty slots, respectively. An interrogation process is initiated by the reader with th 

broadcast of a       command which contains the frame size. Upon receiving this command, tags generate 

a random number in the range of        and set their counter equal to the generated value. Then, the 

reader interrogates each slot of the frame one by one using the              command. For each 

             command, tags decrease their counter by one. Tag with counter equals to zero transmits its 

ID information to the reader. However, if there are more than one tag with counter equals zero for current 

slot, a collision would be detected by the reader. Consequently, the     is increased by some pre-determined 

  value. In the case of empty slot,     would be decreased by the same    value. The round     value would 

be updated continuously for each slot until a change is detected upon which the reader would exit the current 

frame and broadcasts new frame size using Query adjust command. This process repeats until all tags are 

identified. The standard limits the round     value in the range between 0 to 15 for delay concerns. Besides, 
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reader has the autonomy to decide whether to exit the current frame or continue interrogating it even when 

the round     value had changed. 

One unique feature of the EPC-C1G2 algorithm is that it has different time durations for success, 

collision and empty slots as per the standard. Thus, the claim that the throughput of FSA maximized when 

    is not applicable even though EPC-C1G2 is a variant of FSA. This has been verified analytically by 

[8] and the optimal frame size,   for EPC-C1G2 was calculated as: 
 

L 1.46 N-1 (3) 
 

where,     is the contending tag population. 

Q-algorithm has several drawbacks as follow. The initial selection of the Q value affects its 

performance significantly. But the reader has no means to know the population of tags in the network a priori 

to set the Q value appropriately. Besides, Q adjustment strategy using    produces excessive protocol 

overheads and also performs poorly in dense tag environment. 

 

2.2. Related works 

The limitations of the FSA propelled numerous research efforts which resulted in dynamic frame 

length Aloha, also known as dynamic frame slotted Aloha (DFSA) [7]. In DFSA, frame size is adjusted at 

each communication interval based on the estimated number of backlog tags given by: 
 

L 2.39 C (4) 
 

where,   is the number of collided slots in the previous frame. DFSA achieves normalized throughput of 

0.426 as compared to 0.368 in slotted Aloha. Hence, it is clear that the performance of FSA can be further 

improved by dynamically adapting the frame size which in turn depends on the prediction accuracy of the 

number of unidentified tags. 

Vogt developed unidentified or backlog tag estimation based on number of empty (E), collision (C) 

and success (S) slots in the previous frame [9]. The author selected the   which minimize the distance of 

 two vectors, 
 

 vd min |(
a0
a1
am
) - (

E

S

C
)| (5) 

 

The expected values of empty, success and collision slots are: 
 

a0 L 1-
1

L
 
N

 (6) 

 

a1 N 1-
1

L
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 (7) 

 

am 1-a0-a1 (8) 
 

Nevertheless, it is intuitively clear that an ACA should over allocate slots at the beginning of the 

interrogation round and reduce it gradually over the time to reduce the delay. However, existing algorithms in 

the literature use a static policy in which a static constant is used such as in (4) to set the frame size 

regardless of the fact that number of unidentified tags reduces over the time. Thus, in this work, we used 

reinforcement learning to address both the overallocation and static contant issues by learning an  

optimal policy. 

 

 

3. METHODOLOGY 
In this section, we present a novel and efficient frame adaptation method called reinforcement 

learning based dynamic frame slotted Aloha (RL-DFSA). We used the Q-learning algorithm since it is known 

to be one of the most effective and popular algorithms to find an optimal policy in the absence of transition 

probability and reward function [10]. 

Q-learning is a model-free reinforcement learning algorithm which learns by interacting with the 

environment and receiving Q-value for the state-action pair. The Q-value denotes the preference of taking an 

action over all other available actions when the system is at a certain state. Formally, for each state      

and action      we define Q-value by: 
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Q(st,at) Q(st,at)  [rt 1  maxa

Q(st 1,at 1)

-Q st,at 
  (9) 

 

where,   is the learning rate,   is the discount factor and      is the delayed reward.  

We now describe how Q-learning can be used for adapting framed slotted Aloha protocol 

dynamically in RFID systems. We are well aware of the computational and space constraints of a typical 

RFID reader. However, there are numerous very powerful current generation RFID readers such as 

GAORFID, RapidRadio etc. which have ARM processor and memory card supports [11, 12]. We envision 

our algorithm to run on these powerful readers to improve their tag reading efficiency. 

The proposed RL-DFSA has two phases, namely, learning (exploration + exploitation) and testing 

(exploitation only) due to the technical difficulty in running both the learning and testing, concurrently. For 

1000 number of tags, RL-DFSA requires 20,000 iterations (~12 minutes) to converge to an optimal policy. 

Therefore, learning and testing phases were conducted separately for time concerns. Readers are reminded 

that RL-DFSA can run online on current generation high-end RFID readers since the algorithm only needs to 

run as long as there are tags to be read unlike 5000 iterations for each tag population as in the current 

simulations. Moreover, the slow convergence of the algorithm is due to the stochastic nature of our 

application and Q-learning itself is slow as rightly observed by [13]. 

Frame Slotted Aloha is considered in this work and Q-learning is used to capture the learning 

experience. A frame comprises multiple slots in which the reader communicates with nearby tags. Q-learning 

is applied on the reader side as the tags are very primitive for the needed computation. A reader would 

initialize an interrogation round and continuously adapt the frame size until all the tags in the range are 

identified. However, the reader is not privy of the tag population as in the real-world application. Thus, the 

reader needs to estimate the contending tags population and adapt the frame size based on the available 

information such as collisions, empty and successful slots in the previous frame. There are numerous tag 

estimation and frame size adaptation methods available in the literature as reviewed in Section 2. In this 

work, Q-learning was used to solve both the tag estimation and frame size adaptation problems of  

RFID system. 

It is evident from Section 2 that the frame size should be 1.46 times larger than the contending tags 

population. Thus, the focus shifted from frame size estimation to number of tags estimation since the 

efficiency of the algorithm now rests solely on the accuracy of the tag estimation algorithm. The number of 

tags transmitting at the same slot can vary according to the availability of number of slots and tag population. 

However, the lower bound for the number of tags in a collision slot is two. In this work, we defined the 

actions for Q-learning based on this rational intuition. Initially, eleven actions were defined as follow: 
 

Action 1 1.46  2.0  num er of collision (10) 
 

Action 2 1.46  2.2  num er of collision (11) 
 

and so on until, 
 

Action 11 1.46  4.0  num er of collision (12) 
 

The number of actions was limited at eleven since increasing it indefinitely would increase the 

computational and space complexities, exponentially. The state of the learning agent is defined as the number 

of collisions in the previous frame. The goal of the learning agent is to reduce the number of collisions to 

zero. The agent is assisted in its task through a reward function. Reward function for this work is defined 

using the collision ratio (
num er of collision

frame size
) as follows: 

 

reward 

{
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1
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 (13) 

 

An initial study was conducted to identify dominant actions based on the cumulative sum of the Q 

values. Dominant actions were characterized by the relatively high cumulative sum of the Q-values. We 

ranked the cumulative sum from highest to lowest and top 3 actions were identified as dominant. Only three 

actions (4, 2 and 1) were selected since the difference in cumulative sum of the Q-values between the third 

and following actions were insignificant. Using the optimal actions identified in the initial study, another 
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simulation was performed to acquire the optimal policy and Q-matrix for a tag population of 1000. The 

parameters of RL-DFSA algorithm for the initial study are presented in Table 1. The initial state of the agent 

can be any arbitrary value except one since state one is the goal state. The timing parameters given in Table 2 

were used for all our simulations. The pseudocode of RL-DFSA is presented in Algorithm 1. In the testing 

phase, the learned Q-matrix was used to select an optimal action during each state.  
 

 

Table 1. RL-DFSA parameter for the initial study 
Parameter Value 

Initial state 2 
Action 11 

Learning rate,  0.1 
Discount rate,  0.9 

Exploration,  0.3 

Epsilon decay rate 0.99971 

Maximum iteration 30,000 

Number of tags 1000 

Initial frame size 16 
 

 Algorithm 1 RL-DFSA 

1. Set t 0, max iteration 30000 and initialize 

          Q-values  (     ) for all      

and     . 

2. while t max iteration do 

3.          select random action,    
4. Frame size=   

5. Collision=0; Success=0; Empty=0; 

6. while      do 

7. Broadcast frame size and get C, S, E. 

8. Next state     =C + 1; 

9. Get reward     (     ). 
10. Update Q-value  

Q(st,at) Q(st,at)  [rt  maxa Q(st 1,a
 )-Q(st,at)] 

11. if    random_float_between 0 and 1 

12. Select random action,    
13. else 

14. Select next action at argmaxa  A Q(st,a
 ) 

15. end 

16. Frame size=   
17.                    

18. end while   

19.       and     decay rate 

20. end while 

  

  

Table 2. EPC-Gen2 reader interrogation parameters [14] 
Parameter Duration Parameter Duration 

Tari 6.5 s Tari 6.5 s 
RTcal 16.25 s RTcal 16.25 s 
BLF 394kHz BLF 394kHz 
T1 20.84 s T1 20.84 s 
T2 7.61 s T2 7.61 s 

TRext 1 TRext 1 
M 1 M 1 

TRN16 126.9 s TRN16 126.9 s 
TEPC 695.43 s TEPC 695.43 s 

T3 25.381 s   
 

 

 

 

4. SIMULATION RESULTS AND DISCUSSION 

The collision arbitration performance of the proposed algorithm and the reference algorithms 

including EPC-Q-Slot, EPC-Q-Frame [15], EPC-Fixed [15] and Ideal was compared through extensive 

Monte Carlo simulations under Matlab software environment. All the EPC algorithms are variants of  

EPC-C1G2 algorithm which was discussed in Section 2. EPC-Q-Slot algorithm simulates the scenario where 

the reader immediately issues the Query adjust command as soon as a variation in round (Qfp) value is 

detected. In contrast, EPC-Q-Frame simulates the scenario when the reader only issues a Query adjust 

command at the beginning of a new frame even though the round (Qfp) value had changed midframe. 

Besides, EPC-Fixed algorithm simulates the commercial readers with fixed frame size. Finally, the Ideal 

algorithm was used as an upper bound of performance which can be achieved by an algorithm which knows 

the tag population a priori. Two metrics, namely, the time system efficiency and the average number of 

frames are considered to evaluate the performance of RL-DFSA. 

a. Time system efficiency (TSE) [8]-> This metric gives the percentage of time successfully spend in 

identifying tags. It is calculated as follow: 
 

TSE 
Success Ts

Success Ts Empty Te Collision Tc
 (14) 

 

where, Success, Collision, and Empty denote the number of successful, collided and empty slots in the frame, 

respectively. Ts, Te, and Tc are the duration of successful, empty and collision slots, respectively. 

b. Average number of frames per round -> This metric gives us an average number of frames required by 

the reader for each interrogation round. 

The primary time parameters for the simulations were obtained from [14] and are presented in  

Table 2. Besides, the simulation scenario was divided into two–sparse (10–100 tags) and dense (100–1000 

tags) environments–for an easier interpretation of the results. The initial simulation parameters of all the 

algorithms are given in Table 3. The performance of RL-DFSA in terms of TSE was evaluated by comparing 

it with the other four algorithms for a various number of tags as shown in Figure 1. 
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Table 3. Initial parameters for the algorithms 
Algorithm Parameter Value 

EPC-Q-Slot 
Q  

cq 

4 

0.3 

EPC-Q-Frame 
Q  

cq 

4 

0.3 

EPC-Fixed 

Q (Sparse) 

Q (Dense) 

cq 

4 

7 

0.3 

Ideal 
Initial Frame Size 

Subsequent Frame 

16 

1.46   no. of remaining tags 

RL-DFSA 
Initial Frame Size 
Subsequent Frame 

16 
Based on the learned policy 

 

 

  
 

Figure 1. Time system efficiency of the algorithms for a different number of tags 
 

 

The Ideal algorithm serves as an upper bound of performance that can be achieved when the reader 

knows exactly the number of tags to be identified and set the frame-size to 1.46 times the contending tag 

population. In both the sparse and dense tag environments, EPC-Q-Slot performs identically to RL-DFSA as 

we can see in Figure 1. Both these algorithms achieve near-optimal performances thanks to their efficient 

frame size adaptation mechanism. In the case of EPC-Q-Slot, the ability to adjust the frame size as soon as 

the round Qfp changes provide it with the needed dynamic adaptation for any number of tag population. On 

the other hand, RL-DFSA selects an optimal frame size for each iteration based on the received positive or 

negative feedback for its decision on the previous frame. This ability to adjust its action based on rewards 

and punishment makes it suitable for dynamic environments such as the RFID systems. In contrast, both the 

EPC-Q-Frame and EPC-Fixed algorithms are unable to cope up with the dynamic tag population as can be 

seen from their unstable and inferior TSE performance. Besides, EPC-Fixed performed the worst since 

dynamic frame size adaptation is absent when the number of tags changes. Overall, RL-DFSA is 6.3%-250%, 

0.4%-18.6% and 0.4%-5.7% better at TSE for sparse tag environment as compared to EPC-Fixed,  

EPC-Q-Frame and EPC-Q-Slot algorithms, respectively. Also, for dense tag environment, RL-DFSA 

performs 5.3%-707.4% and 17%-578.8% better as compared to EPC-Fixed and EPC-Q-Frame algorithms, 

respectively. The performance of RL-DFSA and EPC-Q-Slot algorithms is identical in both the sparse and 

dense tag environments as far as the TSE metric is concerned: 

It is evident from the literature that the radio transmitter module of sensor nodes consumes almost 

three times more energy as compared to the node’s microcontroller [16]. So, it is perfectly logical to opt for 

longer computation if it can reduce the required number of radio transmissions. In our case, RL-DFSA 

requires a much larger number of computations as compared to the other four algorithms since it needs to 

update the state-reward matrix using (9) after each transmission. However, the tradeoff between the energy 

required for communication and computation becomes irrelevant if the performance of the proposed 

algorithm is subpar. Incidentally, RL-DFSA performs identically to EPC-Q-Slot which is the best performing 

commercial algorithm while requiring an order of magnitude lower number of frames as presented in Figure 

2. The difference in the number of frames is much more pronounced in the dense tag environment. Through 

reducing the number of Query adjust commands by selecting optimal frame in each round, RL-DFSA 

improves energy efficiency. Meanwhile, EPC-Fixed performed worse as compared to EPC-Q-Slot in sparse 

tag environment since the frame size of 16 is not enough to accommodate a larger number of tags. However, 

its performance increases in dense tag environments since the new frame size is 128. Generally, algorithms 

which adapt their frame size following a frame-by-frame adjustment strategy require a smaller number of 

control messages as compared to the algorithms with slot-by-slot adjustment techniques. The reason for using 
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slot-by-slot adjustment strategy in commercial readers is mainly due to its high TSE performance which is 

hardly achievable by normal frame-by-frame algorithms as shown in Figure 1. However, RL-DFSA can 

guarantee a similar TSE performance that of the EPC-Q-Slot without the need for high communication cost 

due to the issuance of numerous Query adjust commands. This high efficiency of the proposed algorithm is 

due to its ability to learn an optimal policy even in a dynamic environment such as the RFID systems.  
 

 

  
  

Figure 2. Average number of frames required per interrogation round for various algorithms 

 

 

5. CONCLUSION AND FUTURE WORKS 

Collision arbitration in RFID systems is crucial since collsion wastes precious energy of the  

battery-operated reader. This is not trivial since the tag population may vary from tens to thousands. Thus, in 

this work, we proposed RL-DFSA algorithm to address the collision and energy efficiency problems of RFID 

systems. RL-DFSA uses the Q-learning algorithm to select an optimal action which corresponds to a frame 

size among the available actions on each iteration based on the reward or punishment it got for selecting the 

previous action that leads it to be in its current state. The proposed algorithm was compared with EPC-Fixed, 

EPC-Q-Frame, EPC-Q-Slot, and Ideal algorithms in sparse and dense tag environments. The TSE metric of 

both the RL-DFSA and EPC-Q-Slot are almost identical while being very close to the performance of the 

Ideal algorithm. However, RL-DFSA achieved this near-optimal performance without the need for 

propagating excessive control messages as is the case with the EPC-Q-Slot algorithm Figure 2. Thus,  

RL-DFSA is energy efficient as compared to the EPC-Q-Slot since it is a known fact that the communication 

cost of a system is very high as compared to its computational cost.  
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