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Energy efficiency is crucial for radio frequency identification (RFID)
systems as the readers are often battery operated. The main source of the
energy wastage is the collision which happens when tags access the
communication medium at the same time. Thus, an efficient anti-collision
protocol could minimize the energy wastage and prolong the lifetime of the
RFID systems. In this regard, EPCGlobal-Class1-Generation2 (EPC-C1G2)
protocol is currently being used in the commercial RFID readers to provide
fast tag identification through efficient collision arbitration using the Q
algorithm. However, this protocol requires a lot of control message
overheads for its operation. Thus, a reinforcement learning based
anti-collision protocol (RL-DFSA) is proposed to provide better time system
efficiency while being energy efficient through the minimization of control
message overheads. The proposed RL-DFSA was evaluated through
extensive simulations and compared with the variants of EPC-Class 1

Generation 2 algorithms that are currently being used in the commercial
readers. The results show conclusively that the proposed RL-DFSA performs
identically to the very efficient EPC-C1G2 protocol in terms of time system
efficiency but readily outperforms the compared protocol in the number of
control message overhead required for the operation.
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1. INTRODUCTION

Radio frequency identification (RFID) is a technology that uses radio waves for the purpose of
identifying a large number of goods in a swift manner. This technology has widespread acceptance in various
fields of applications such as inventory management, logistic, retailing and dairy farms [1]. A typical RFID
setup has at least one reader with numerous RFID tags. RFID tags are classified into passive or active tags
depending on the availability of a power source on them. A passive tag gets its power from the RF signal of
the reader while an active tag has its own battery. Thus, the communication range of an active tag is much
longer as compared to the passive tags. Despite having clear disadvantage in communication distance,
passive tags are largely favored due to the advantages of low deployment cost and longer lifetime. Hence, we
consider only an RFID system with a reader and numerous passive tags in this paper. Also, reader-to-reader
interference is out of the scope of this paper.

RFID tags communicate with the reader using a shared communication channel. Thus, collisions are
inevitable when multiple tags try to communicate their ID at the same time to the reader [2]. This problem is
particularly challenging since medium access schemes like frequency division multiple access (FDMA) or
code division multiple access (CDMA) are cannot be implemented due to the computational limitations of
the passive tags. Therefore, the burden of alleviating collisions in the network falls on the reader. There are
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numerous collision arbitration protocols available in the literature for the RFID systems. Among those
protocols, Framed Slotted Aloha (FSA)-based protocols are popular and are being used extensively in RFID
standards due to the simplicity and good performance [3, 4]. FSA protocol is probabilistic in nature in which
tags select a random slot to send their ID. Besides, in FSA, tags won’t check the channel to see whether it is
busy or free before start transmitting their own ID. The usage of random transmission strategy with time slots
reduces the collision probability in this protocol. Current RFID standard, EPCGlobal Class 1 Generation 2
(EPC-C1G2) uses a variant of FSA for its operation [3].

The EPC-C1G2 protocol is used extensively in current generation commercial RFID devices since it
is the defacto standard of the industry. Simplicity and high throughput of the algorithm helped in its rapid
adoption in the industry. However, EPC-C1G2 generates a high amount of control messages which increases
the energy consumption [5]. Despite the shortcoming, EPC-C1G2 is still favored as an efficient anti-collision
algorithm (ACA) thanks to its high time system efficiency (TSE) as shown in Figure 1. Therefore, in this
paper, we present an efficient ACA namely, reinforcement learning based dynamic frame slotted Aloha
(RL-DFSA) which can perform as good as EPC-C1G2 protocol without the need for large number of control
message exchanges. The performance of the proposed algorithm (RL-DFSA) was evaluated using
Monte-Carlo simulations (5000 iterations) and compared with algorithms that are currently being used in
commercial settings. RL-DFSA is very efficient in identifying tags as exhibited by its high TSE metric and
requires one order of magnitude lesser message exchanges than that of the best performing algorithm in the
commercial readers.

The remainder of this paper is organized as follows. Section 2 discusses the current RFID standard
and related works. In Section 3, the complete methodology of the proposed RFID anti-collision protocol is
presented in detail. Section 4 presents results and discussion of the proposed protocol in relation to selected
protocols from the literature. Finally, the paper concludes with concluding remarks and future works in
Section 5.

2. BACKGROUND INFORMATION AND RELATED WORKS
2.1. Primer on FSA and Q-Algorithm

In FSA, a frame is divided into slots of same length [6]. At the beginning of each frame, interrogator
or reader broadcasts the frame size to the tags. The tags then select a slot randomly and send the ID
information to the reader in that slot. Due to this random slot selection policy, excessive collisions are bound
to happen depending on the tag population if a non-optimal frame size is selected by the reader. The average
throughput, U of FSA for N tag population and frame size L is:

| N
U=N(I-7) (1)

and the normalized throughput, U, is given by:

N 1 N-1
Unorm_r(l_z) (2)

The normalized throughput is maximized when L = N. However, readers are not privy of the tag
population and FSA has a fixed frame size. Due to these limitations, a variant of FSA called dynamic frame
slotted aloha (DFSA) which adapts frames dynamically based on the backlog tag estimation was proposed in
the literature [7]. However, its throughput drops significantly as the number of tags increases. Thus,
Q-algorithm, a variant of DFSA was employed instead in the current generation RFID standard.

Q algorithm operates using two parameters, namely, a floating-point parameter, Qr, and c,. The
round Qp, Vvalue is used to set the frame size, L and the c, is used to increase or decrease the Qy, value in the
event of collision or empty slots, respectively. An interrogation process is initiated by the reader with th
broadcast of a Query command which contains the frame size. Upon receiving this command, tags generate
a random number in the range of 0 — 2271 and set their counter equal to the generated value. Then, the
reader interrogates each slot of the frame one by one using the Query_repeat command. For each
Query_repeat command, tags decrease their counter by one. Tag with counter equals to zero transmits its
ID information to the reader. However, if there are more than one tag with counter equals zero for current
slot, a collision would be detected by the reader. Consequently, the @, is increased by some pre-determined
cqVvalue. In the case of empty slot, Qf,, would be decreased by the same ¢, value. The round Qy,, value would
be updated continuously for each slot until a change is detected upon which the reader would exit the current
frame and broadcasts new frame size using Query adjust command. This process repeats until all tags are
identified. The standard limits the round Qy,, value in the range between 0 to 15 for delay concerns. Besides,
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reader has the autonomy to decide whether to exit the current frame or continue interrogating it even when
the round Q,, value had changed.

One unique feature of the EPC-C1G2 algorithm is that it has different time durations for success,
collision and empty slots as per the standard. Thus, the claim that the throughput of FSA maximized when
L = N is not applicable even though EPC-C1G2 is a variant of FSA. This has been verified analytically by
[8] and the optimal frame size, L for EPC-C1G2 was calculated as:

L=1.46xN-1 ©)

where, N — 1 is the contending tag population.

Q-algorithm has several drawbacks as follow. The initial selection of the Q value affects its
performance significantly. But the reader has no means to know the population of tags in the network a priori
to set the Q value appropriately. Besides, Q adjustment strategy using c¢, produces excessive protocol
overheads and also performs poorly in dense tag environment.

2.2. Related works

The limitations of the FSA propelled numerous research efforts which resulted in dynamic frame
length Aloha, also known as dynamic frame slotted Aloha (DFSA) [7]. In DFSA, frame size is adjusted at
each communication interval based on the estimated number of backlog tags given by:

L=2.39xC 4)

where, C is the number of collided slots in the previous frame. DFSA achieves normalized throughput of
0.426 as compared to 0.368 in slotted Aloha. Hence, it is clear that the performance of FSA can be further
improved by dynamically adapting the frame size which in turn depends on the prediction accuracy of the
number of unidentified tags.

Vogt developed unidentified or backlog tag estimation based on number of empty (E), collision (C)
and success (S) slots in the previous frame [9]. The author selected the N which minimize the distance of
two vectors,

ap E
=m1 a -{s
£,4=Mmin (arln) <C) (5)
The expected values of empty, success and collision slots are:
1N
ap=L(1-7) (6)
1 N'l
a=N(1--) )
an=1-ay-a, (8)

Nevertheless, it is intuitively clear that an ACA should over allocate slots at the beginning of the
interrogation round and reduce it gradually over the time to reduce the delay. However, existing algorithms in
the literature use a static policy in which a static constant is used such as in (4) to set the frame size
regardless of the fact that number of unidentified tags reduces over the time. Thus, in this work, we used
reinforcement learning to address both the overallocation and static contant issues by learning an
optimal policy.

3. METHODOLOGY

In this section, we present a novel and efficient frame adaptation method called reinforcement
learning based dynamic frame slotted Aloha (RL-DFSA). We used the Q-learning algorithm since it is known
to be one of the most effective and popular algorithms to find an optimal policy in the absence of transition
probability and reward function [10].

Q-learning is a model-free reinforcement learning algorithm which learns by interacting with the
environment and receiving Q-value for the state-action pair. The Q-value denotes the preference of taking an
action over all other available actions when the system is at a certain state. Formally, for each state s, € S
and action a; € A we define Q-value by:
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Q(spap) ‘_Q(St,a1)+a[rt+1+Y max, Qs ) ] 9)
-Q(s,a)
where, a is the learning rate, y is the discount factor and r, , is the delayed reward.

We now describe how Q-learning can be used for adapting framed slotted Aloha protocol
dynamically in RFID systems. We are well aware of the computational and space constraints of a typical
RFID reader. However, there are numerous very powerful current generation RFID readers such as
GAORFID, RapidRadio etc. which have ARM processor and memory card supports [11, 12]. We envision
our algorithm to run on these powerful readers to improve their tag reading efficiency.

The proposed RL-DFSA has two phases, namely, learning (exploration + exploitation) and testing
(exploitation only) due to the technical difficulty in running both the learning and testing, concurrently. For
1000 number of tags, RL-DFSA requires 20,000 iterations (~12 minutes) to converge to an optimal policy.
Therefore, learning and testing phases were conducted separately for time concerns. Readers are reminded
that RL-DFSA can run online on current generation high-end RFID readers since the algorithm only needs to
run as long as there are tags to be read unlike 5000 iterations for each tag population as in the current
simulations. Moreover, the slow convergence of the algorithm is due to the stochastic nature of our
application and Q-learning itself is slow as rightly observed by [13].

Frame Slotted Aloha is considered in this work and Q-learning is used to capture the learning
experience. A frame comprises multiple slots in which the reader communicates with nearby tags. Q-learning
is applied on the reader side as the tags are very primitive for the needed computation. A reader would
initialize an interrogation round and continuously adapt the frame size until all the tags in the range are
identified. However, the reader is not privy of the tag population as in the real-world application. Thus, the
reader needs to estimate the contending tags population and adapt the frame size based on the available
information such as collisions, empty and successful slots in the previous frame. There are numerous tag
estimation and frame size adaptation methods available in the literature as reviewed in Section 2. In this
work, Q-learning was used to solve both the tag estimation and frame size adaptation problems of
RFID system.

It is evident from Section 2 that the frame size should be 1.46 times larger than the contending tags
population. Thus, the focus shifted from frame size estimation to number of tags estimation since the
efficiency of the algorithm now rests solely on the accuracy of the tag estimation algorithm. The number of
tags transmitting at the same slot can vary according to the availability of number of slots and tag population.
However, the lower bound for the number of tags in a collision slot is two. In this work, we defined the
actions for Q-learning based on this rational intuition. Initially, eleven actions were defined as follow:

Action 1=1.46 x2.0 xnumber_of collision (10)

Action 2=1.46 x2.2 xnumber_of collision (11)
and so on until,

Action 11=1.46 x4.0 xnumber_of collision (12)

The number of actions was limited at eleven since increasing it indefinitely would increase the
computational and space complexities, exponentially. The state of the learning agent is defined as the number
of collisions in the previous frame. The goal of the learning agent is to reduce the number of collisions to
zero. The agent is assisted in its task through a reward function. Reward function for this work is defined

. .. . b f collisi
using the collision ratio (tr——=—=""""1 as follows:

frame_size

(-1 ,ratio>0 and< i

-2, ratiozi and< %
reward= | 3 (13)
l—4, ratiozz and< "

. 3
-8, ratlozz

An initial study was conducted to identify dominant actions based on the cumulative sum of the Q
values. Dominant actions were characterized by the relatively high cumulative sum of the Q-values. We
ranked the cumulative sum from highest to lowest and top 3 actions were identified as dominant. Only three
actions (4, 2 and 1) were selected since the difference in cumulative sum of the Q-values between the third
and following actions were insignificant. Using the optimal actions identified in the initial study, another
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simulation was performed to acquire the optimal policy and Q-matrix for a tag population of 1000. The
parameters of RL-DFSA algorithm for the initial study are presented in Table 1. The initial state of the agent
can be any arbitrary value except one since state one is the goal state. The timing parameters given in Table 2
were used for all our simulations. The pseudocode of RL-DFSA is presented in Algorithm 1. In the testing
phase, the learned Q-matrix was used to select an optimal action during each state.

Table 1. RL-DFSA parameter for the initial study Algorithm 1 RL-DFSA
Parameter Value 1. Sett=0, max_iteration=30000 and initialize
Initial state 2 a,y, € and Q-values Q(s;, a;) forall s, € S
Actior) 11 and a, € A.
]f)‘?ammg rate,o 8; 2. while t<max_iteration do
Elscloum. rate,y : 3. s, = 2 and select random action, a,
xploration,e 0.3 .
Epsilon decay rate 0.99971 4. Frame size=16
Maximum iteration 30,000 5. Collision=0; Success=0; Empty=0;
Number of tags 1000 6. whiles; # 1do
Initial frame size 16 7. Broadcast frame size and get C, S, E.
8. Nextstate s;,,=C + 1;
9. Getreward 1y £ (s, ar).
Table 2. EPC-Gen?2 reader interrogation parameters [14] 10. Update Q-value
Parameter Duration Parameter Duration Q(sp,a)<—Q (St,at)+a[rt+“{ max, Q(Sm ’a')'Q(St’
Tari 6.5us Tari 6.5us 11. if € > random_float_between 0 and 1
RTcal 16.25ps RTcal 16.25ps 12. Select random action, a,
BLF 394kHz BLF 394kHz 13, else
% 27(?‘6814 ;lss % 270.5141?: 14. Select next action a,=arg max, ¢, Q(s;,a)
TRext 1 TRext 1 15. end
M 1 M 1 16. Frame size=a;
Trnis 126.9us Trnis 126.9us 17. s; = Next state s;41
Terc 695.43ps Terc 695.43us 18. end while
Ts 25.381ps 19. t =t + 1 and e=exdecay _rate

20. end while

4.  SIMULATION RESULTS AND DISCUSSION
The collision arbitration performance of the proposed algorithm and the reference algorithms
including EPC-Q-Slot, EPC-Q-Frame [15], EPC-Fixed [15] and lIdeal was compared through extensive
Monte Carlo simulations under Matlab software environment. All the EPC algorithms are variants of
EPC-C1G2 algorithm which was discussed in Section 2. EPC-Q-Slot algorithm simulates the scenario where
the reader immediately issues the Query_adjust command as soon as a variation in round (Qg) value is
detected. In contrast, EPC-Q-Frame simulates the scenario when the reader only issues a Query adjust
command at the beginning of a new frame even though the round (Qs,) value had changed midframe.
Besides, EPC-Fixed algorithm simulates the commercial readers with fixed frame size. Finally, the Ideal
algorithm was used as an upper bound of performance which can be achieved by an algorithm which knows
the tag population a priori. Two metrics, namely, the time system efficiency and the average number of
frames are considered to evaluate the performance of RL-DFSA.
a. Time system efficiency (TSE) [8]-> This metric gives the percentage of time successfully spend in
identifying tags. It is calculated as follow:
SuccessxTg

TSE=

A SuccessxTg+EmptyxTe+Collisionx T

(14)

where, Success, Collision, and Empty denote the number of successful, collided and empty slots in the frame,
respectively. T, T, and T.are the duration of successful, empty and collision slots, respectively.
b.  Average number of frames per round -> This metric gives us an average number of frames required by
the reader for each interrogation round.

The primary time parameters for the simulations were obtained from [14] and are presented in
Table 2. Besides, the simulation scenario was divided into two—sparse (10-100 tags) and dense (100-1000
tags) environments—for an easier interpretation of the results. The initial simulation parameters of all the
algorithms are given in Table 3. The performance of RL-DFSA in terms of TSE was evaluated by comparing
it with the other four algorithms for a various number of tags as shown in Figure 1.
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Table 3. Initial parameters for the algorithms

Algorithm Parameter Value

Q 4

EPC-Q-Slot ¢, 03
Q 4

EPC-Q-Frame ¢ 0.3
Q (Sparse) 4

EPC-Fixed Q (Dense) 7

Cq 0.3

1deal Initial Frame Size 16

Subsequent Frame  1.46 x no. of remaining_tags
RL-DFSA Initial Frame Size 16

Subsequent Frame  Based on the learned policy

1 TSE 1 TSE
0.8 ‘_,_.—i;‘__\::.L L 4 ] 0.8 o o
PY —@— EPC-Fixed
0.6 0.6 —— EPC-Q-Frame
""‘ ey EPC-O-Slot
2 —®— EPC-Fixed [ N
0.4 —&— EPCG-Q-Frame 0.4 ALDESA
Ideal
EPC-Q-Slot
0.2 —8— R-DFSA 0.2
ideal
0 0
10 20 30 40 50 60 70 80 90 100 100 300 500 700 900
Number of tags Number of tags

Figure 1. Time system efficiency of the algorithms for a different number of tags

The Ideal algorithm serves as an upper bound of performance that can be achieved when the reader
knows exactly the number of tags to be identified and set the frame-size to 1.46 times the contending tag
population. In both the sparse and dense tag environments, EPC-Q-Slot performs identically to RL-DFSA as
we can see in Figure 1. Both these algorithms achieve near-optimal performances thanks to their efficient
frame size adaptation mechanism. In the case of EPC-Q-Slot, the ability to adjust the frame size as soon as
the round Qg, changes provide it with the needed dynamic adaptation for any number of tag population. On
the other hand, RL-DFSA selects an optimal frame size for each iteration based on the received positive or
negative feedback for its decision on the previous frame. This ability to adjust its action based on rewards
and punishment makes it suitable for dynamic environments such as the RFID systems. In contrast, both the
EPC-Q-Frame and EPC-Fixed algorithms are unable to cope up with the dynamic tag population as can be
seen from their unstable and inferior TSE performance. Besides, EPC-Fixed performed the worst since
dynamic frame size adaptation is absent when the number of tags changes. Overall, RL-DFSA is 6.3%-250%,
0.4%-18.6% and 0.4%-5.7% better at TSE for sparse tag environment as compared to EPC-Fixed,
EPC-Q-Frame and EPC-Q-Slot algorithms, respectively. Also, for dense tag environment, RL-DFSA
performs 5.3%-707.4% and 17%-578.8% better as compared to EPC-Fixed and EPC-Q-Frame algorithms,
respectively. The performance of RL-DFSA and EPC-Q-Slot algorithms is identical in both the sparse and
dense tag environments as far as the TSE metric is concerned:

It is evident from the literature that the radio transmitter module of sensor nodes consumes almost
three times more energy as compared to the node’s microcontroller [16]. So, it is perfectly logical to opt for
longer computation if it can reduce the required number of radio transmissions. In our case, RL-DFSA
requires a much larger number of computations as compared to the other four algorithms since it needs to
update the state-reward matrix using (9) after each transmission. However, the tradeoff between the energy
required for communication and computation becomes irrelevant if the performance of the proposed
algorithm is subpar. Incidentally, RL-DFSA performs identically to EPC-Q-Slot which is the best performing
commercial algorithm while requiring an order of magnitude lower number of frames as presented in Figure
2. The difference in the number of frames is much more pronounced in the dense tag environment. Through
reducing the number of Query adjust commands by selecting optimal frame in each round, RL-DFSA
improves energy efficiency. Meanwhile, EPC-Fixed performed worse as compared to EPC-Q-Slot in sparse
tag environment since the frame size of 16 is not enough to accommodate a larger number of tags. However,
its performance increases in dense tag environments since the new frame size is 128. Generally, algorithms
which adapt their frame size following a frame-by-frame adjustment strategy require a smaller number of
control messages as compared to the algorithms with slot-by-slot adjustment techniques. The reason for using
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slot-by-slot adjustment strategy in commercial readers is mainly due to its high TSE performance which is
hardly achievable by normal frame-by-frame algorithms as shown in Figure 1. However, RL-DFSA can
guarantee a similar TSE performance that of the EPC-Q-Slot without the need for high communication cost
due to the issuance of numerous Query_adjust commands. This high efficiency of the proposed algorithm is
due to its ability to learn an optimal policy even in a dynamic environment such as the RFID systems.

Number of frames per round Number of frames per round

=
N
o o
o 0 2
g & 3

0
[=]
Frames/round
=y
8

Frames/round

- i _I N I‘
800 1000

40 00
20
0 —emlm e i e [ 1 '™ [ | ™ o
10 20 40 80 100 100 200 400
Number of tags Number of tags
B EPC-Fixed M EPC-Q-Frame EPC-Q-Slot MRL-DFSA ® Ideal M EPC-Fixed EPC-Q-Frame M EPC-Q-Slot M RL-DFSA Ideal

Figure 2. Average number of frames required per interrogation round for various algorithms

5. CONCLUSION AND FUTURE WORKS

Collision arbitration in RFID systems is crucial since collsion wastes precious energy of the
battery-operated reader. This is not trivial since the tag population may vary from tens to thousands. Thus, in
this work, we proposed RL-DFSA algorithm to address the collision and energy efficiency problems of RFID
systems. RL-DFSA uses the Q-learning algorithm to select an optimal action which corresponds to a frame
size among the available actions on each iteration based on the reward or punishment it got for selecting the
previous action that leads it to be in its current state. The proposed algorithm was compared with EPC-Fixed,
EPC-Q-Frame, EPC-Q-Slot, and Ideal algorithms in sparse and dense tag environments. The TSE metric of
both the RL-DFSA and EPC-Q-Slot are almost identical while being very close to the performance of the
Ideal algorithm. However, RL-DFSA achieved this near-optimal performance without the need for
propagating excessive control messages as is the case with the EPC-Q-Slot algorithm Figure 2. Thus,
RL-DFSA is energy efficient as compared to the EPC-Q-Slot since it is a known fact that the communication
cost of a system is very high as compared to its computational cost.
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