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1. INTRODUCTION

Brain-computer Interface (BCI) is direct communication pathway between the brain and computer
or other external equipment that can translate brain activities into commands [1-3] as shown in Figure 1. BCI
has potential to become more popular in many application of various fields, for example, medical,
entertainment and military [4]. There are many techniques to get the signals from the brain, such as
electroencephalogram (EEG), Magnetic resonance imaging (MRI) and computer tomography (CT).
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Figure 1. BCI system
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EEG is one of the most commonly used in BCI to records electrical activity and brain waves by
placing the electrode on the scalp. EEG capable in capturing brain information processing quickly with high
temporal resolution, but it has low spatial resolution and high noise level which make it challenging to extract
useful information from EEG signals for BCI application [5].

Motor imagery is a popular paradigm in EEG-based BCI system [6]. The classification of the
imaginary movement such as hand and foot movements is included in this paradigm [7]. Machine learning
technique is commonly used in this classification process as it has the ability to model high-dimensional
datasets [8]. Machine learning is the technique which can be briefly defined as enabling computers make
successful predictions using past experiences [9].

In machine learning, there are various algorithms for classification process such as Support Vector
Machine (SVM), K-Nearest Neighbors (KNN), Naive Bayes, Decision Tree, and Logistic Regression. SVM
is one of the algorithm that usually used for motor imagery classification in a BCI system [3, 6], [10-13]. In
[14], the classification of motor imagery is done by comparing the signal using the KNN classifier. Besides
that, KNN also used in automated seizure detection [15] to classify EEG signals either seizure or non-seizure.
Naive Bayes approach is used in [16, 17] to classify motor imagery and lower limb movement respectively.
In [18], Decision Tree is used to classify the brain signals from imaginary tasks to open and close the hand
for holding a ball. Logistic regression is used in [19] to classify the left and right motor imagery signals.

The successful deployment of a BCI system is depend on the effectiveness of signal processing to
classify the desired signals. Therefore, the aim of this paper is to study the performance of various
classification algorithms in machine learning technique which can be used to classify motor imaginary task.
In this paper, we study five machine learning algorithm: SVM, KNN, Naive Bayes, Decision Tree and
Logistic Regression. The results helps in choosing better algorithm that makes a good classification
performance in motor imagery classification. The rest of this paper is organized as follows: Section Il gives
the description of the dataset used. Section 11l contains the methodology of research. In section 1V, the results
is displayed with the discussion. Lastly, section V is conclusion.

2. DATADESCRIPTION

The dataset used is Dataset 1 [20] from BCI Competition IV provided by B.Blankertz, C. Vidaurre
and K.-R.Muller from Berlin (Germany). Motor imagery was performed by four healthy participants served
as experimental subjects (a, b, f and g) [21]. Two mental tasks out of three tasks which are right hand
movements, left hand movements or foot movements (side chosen by subject and can be both feet) is
performed by the subjects in this experiment. The mental task performed by each subject is shown in Table 1.

The experiment have two sessions which are calibration and evaluation session to record the training
and test data respectively. Training data were provided with complete marker information which shown
where the mental task is performed as it could be used for adapting the parameters of the methods or models
while test data only consisted of the EEG signals, without any marker. Therefore, in this paper we use the
data from calibration session only.

In the first two runs, all subjects was asked to perform a certain mental task based on arrows
pointing left, right, or down that are presented as visual cues on a computer screen. The cues were displayed
for a period of 4s which interleaved with 2s of blank screen and 2s with a fixation cross shown in the center
of the screen. Each subject have a total of 200 trials, as in each run 50 trials of each of the chosen two classes
have been presented as shown in Table 2. A break of 15s was given for relaxation after every 15 trials and
there were longer breaks of 5-15min between the runs.

Table 1. Mental task performed for each subject Table 2. Total of trials for each of the chosen class
Subjects Movements Subjects Movements 1%run 2™ run
a Left hand, Right foot a,f Left hand 50 50
b Right hand, Left hand Right hand 50 50
f Left hand, Right foot b,g Left hand 50 50
g Right hand, Left hand Right hand 50 50

3. RESEARCH METHOD
3.1. Feature extraction based on FFT-LDA

The aim of feature extraction process is to extract the desired signals from the raw EEG signals and
eliminates the unwanted signals such as background noise. The EEG signals is divided based on frequency
bands which are gamma, beta, alpha, theta, and delta band. The frequency of motor imagery is usually lies in
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alpha or beta band. Thus, the EEG signal processing should be process in term of frequency. The raw EEG
signals which is in time domain, need to convert to frequency domain for better extraction.

The Fast Fourier Transform (FFT) is applied in order to transforms the signal from the time domain
to frequency domain. In FFT, the raw EEG signals is compared to sine waves consisting certain frequencies
and the matching score is calculated. The result of matching score is depend on the similarity between the
signals to the sine wave.

Linear Discriminant Analysis (LDA) is then applied to FFT features to increase the computational
efficiency by reduce the number of dimension in a dataset. Therefore, the degree of over-fitting can be
reduced and the class separability is optimized by finding the feature subspaces [22]. The features extracted
from FFT-LDA are then feed into several classifiers for classification process. Figure 2 shows the block
diagram of the feature extraction process for better understanding.

!
Figure 2. Block diagram of feature extraction process
3.2. Classification
Classification process is the technique to identify the class of the samples in the dataset. In this

paper, the classifier is used to identify the type of movements such as left hand, right hand and right foot as
shown in Figure 3. Five classifiers are used in this paper as follows:

¥

Figure 3. Block diagram of classification process

3.2.1. Support Vector Machine (SVM)

Support Vector Machine (SVM) is a classifier based on Statistical Learning Theory [23] which its
algorithm is used to find decision boundary between the class samples, which correctly separates the samples
into the classes. SVM can effectively prevent the defects of traditional classification methods, such as over
learning, dimension disaster and local minima [3]. This classifier aims to maximize the distance between
decision boundary and support vectors which is called as margin [22]. The samples is separates according to
their class by SVM algorithm as this algorithm find the decision boundary between classes and maximize
the margin.

3.2.2. K-Nearest Neighbors (KNN)
K-Nearest Neighbors (KNN) is a non-parametric learning algorithm [24] which capable to
characterize EEG data as it is a suitable for noisy and large data and its result is depend on the value of k and
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distance metric used [23]. The new data point is classified by using the KNN algorithm with locates the k
samples that are nearest to it based on the distance metric used and its class label is calculated depends on the
class label of its k nearest neighbors.

The concept of KNN algorithm is illustrated in Figure 5. by using one of its distance metric. The
symbol ‘X’ at point (0.6, 0.45) in the figure is shows the new data to be classified and the radius with the dot
line is the result of applying KNN algorithm with k=9 using Euclidean distance. In this case, there are two
possible classes: circle class and triangle class. The KNN will classify the new data to the triangle class as the
triangle class has the highest number of samples within the radius [7].
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Figure 5. The KNN classification (euclidean distance with k=9) [7]

3.2.3. Naive Bayes
Bayes’ theorem is used for this classifier [25] which calculates a set of probabilities by counting the
frequency and combinations of values in a given dataset [26]. This algorithm is defined as;

_ P&XIOP©O)
P(CIX) = =05 @)
where P (C | X) denotes posterior probability which is the probability of class C given the data X, P(C)
denotes class prior probability which means the probability of class C for the data X being true, P (X) denotes
predictor prior probability which is the probability of the data regardless its class and P (X|C) denotes
likelihood which is the probability of the data X given that the class C was true.

3.2.4. Decision tree

Decision Tree classifier breaks down a dataset by splitting the dataset into two or more. This
classifier works like a tree with root node, decision nodes and terminal nodes. The root node represents the
entire dataset that will be split into two or more branch/sub-tree. The decision node is a node that will split
into another sub-nodes and the terminal node which is also called as leaf node is represents a decision or
classification that will not split further.

3.2.5. Logistic regression

Logistic Regression predicts the class of the data/sample by fitting data to the logistic function
(inverse of logit function). The logit function takes input values in the range 0 and 1 and transforms them to
values over the entire real number range, which we can use to express a linear relationship between feature
values and the log-odds [22]:

logit(P(y = 1|x)) = WoXg + WiXq + -+ WXy = X owix; = wix 2

where P(y=1 | x) is the conditional probability that are particular sample is belongs to class 1 given its feature
X. The inverse of logit function is called as logistic function, defined as;

0(z) = —— ®)

1+e72
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Where z is the net input, the linear combination of weights and sample features can be calculated as;

z=wlx = wy + wyxg + -+ WXy, (4)

4. RESULTS AND ANALYSIS

The classification of imaginary movements for each subject in this paper involves two classes: right
hand vs left hand or left hand vs right foot. In this section, the classification result of imaginary movements
by applying various classifiers in machine learning is tabulated and illustrated in tables and graphs
respectively. The 10-fold cross validation technique is used to verify the results. The performance of
classifiers is measure using accuracy and AUC (area under the curve). AUC used the concept of sensitivity
and specificity which linked to true/false positives indices. Therefore it gives meaningful data compared
to accuracy [27].

The result of the classifiers of all subjects is given in Table 3. It was observed that for classification
between left hand and right foot using accuracy measurement, SVM give the highest result with 77.73% for
the subject a and 71.18% for subject f. In AUC measurement, SVM, Logistic Regression and Naive Bayes
give the highest result with 86.16% for the subject a and 80.02% for subject f. For classification between
right hand and left hand using accuracy measurement, Logistic Regression and Naive Bayes give the highest
accuracy, subject b with 66.34% and subject g with 79.23% respectively. In AUC measurement, SVM,
Logistic Regression, Naive Bayes give the highest accuracy with 72.20% for subject b and 89.09% for
subject g. Figure 8 and Figure 9 shows the graph of comparison between accuracy and AUC measurement for
left hand vs right foot and right hand vs left hand respectively.

Table 3. Result for subject a, f, band g
Left hand & Right foot Left hand & Right hand
a f b g

Classifier Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

) ) ) () (%) (B (%) (%)
SVM 77.73 86.16 71.18 80.02 66.01 72.20 78.89 89.09
k-NN 76.73 85.24 69.50 78.08 60.98 67.71 76.23 87.35

Logistic Regression 77.40 86.16 71.01 80.02 66.34 72.20 78.73 89.09
Decision Tree 77.40 84.60 67.82 75.94 64.01 69.08 76.21 87.48
Naive Bayes 77.40 86.16 71.01 80.02 65.68 72.20 79.23 89.09

Motor Imaginary Left Hand and Right foot
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Figure 8. Accuracy and AUC measurement for motor imaginary left hand and right foot

Motor Imaginary Right Hand and Left Hand
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Figure 9. Accuracy and AUC measurement for motor imaginary right hand and left hand
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5. CONCLUSION

This paper focuses on the classification of the EEG signal for imaginary movements to analyze the
performance of classifiers from the machine learning technique. Feature extraction of the signals is done by
using FFT-LDA technique. There is five classifier are used to classify the data which are SVM, k-NN,
Logistic Regression, Decision Tree and Naive Bayes. The AUC measurement gives a better result compared
to accuracy measurement. Best results were obtained using SVM, Logistic Regression and Naive Bayes
classifier with 89.09% by using AUC measurement. In future work, we will investigate how to improve this
algorithm in getting a better result than existing results for EEG classification.
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