Bulletin of Electrical Engineering and Informatics
Vol. 8, No. 1, March 2019, pp. 223~230
ISSN: 2302-9285, DOI: 10.11591/eei.v8i1.1396 a 223

SOC integration for video processing application

Chan Boon Cheng, Asral Bahari Jambek

School of Microelectronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia

Article Info

ABSTRACT

Article history:

Received Oct 17, 2018
Revised Nov 19, 2018
Accepted Dec 14, 2018

Keywords:

Cyclon Il EP2C70 FPGA
Greyscale
SDRAM controller

Video processing is an additional system that can improve the functionality
of video surveillance. Integration of a simple video processing system into a
complete camera system with a field-programmable gate array (FPGA) is an
important step for research, to further improve the tracking process. This
paper presents the integration of greyscale conversion into a complete
camera system using Nios Il software build tools for Eclipse. The camera
system architecture is designed using the Nios Il soft-core embedded
processor from Altera. The proposed greyscale conversion system is
designed using the C programming language in Eclipse. Parts of the
architecture design in the camera system are important if greyscale
conversion is to take place in the processing, such as synchronous dynamic
random-access memory (SDRAM) and a video decoder driver. The image or

Terasic TRDB-D5M
Video processing

video is captured using a Terasic TRDB-D5M camera and the data are
converted to RGB format using the video decoder driver. The converted data
are shown in binary format and the greyscale conversion system extracts and
processes the data. The processed data are stored in the SDRAM before
being sent to a VGA monitor. The camera system and greyscale conversion
system were developed using the Altera DE2-70 development platform. The
data from the video decoder driver and SDRAM were examined to confirm
that the data conversion matched greyscale conversion formulae. The
converted data in the SDRAM correctly displayed the greyscale image on a
VGA monitor.

Copyright © 2019 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Chan Boon Cheng,

School of Microelectronic Engineering,
Universiti Malaysia Perlis,

Perlis, Malaysia.

Email: chanbc91@gmail.com

1. INTRODUCTION

Video processing is an important step for improving the functionality of video surveillance. A
highly accurate video processing system is able to track a specific target with minimal error. However, a
simple video processing system test is needed in the early stages of video processing system design. The test
system is able to confirm that the designed camera system can be integrated into the video processing system.
The proposed video processing system is a simple greyscale conversion system using Nios Il software build
tools for Eclipse on the Altera DE2-70 development platform. Proposed simple greyscale conversion system
is able to confirm the functionality of designed architecture before proceed with major video processing
algorithm integration. External peripherals, i.e., a TRDB-D5M camera and a VGA monitor, are needed to
complete the video processing system [1, 3]. The TRDB-D5M camera is needed to capture the image or
video and deliver the data to the video decoder driver for further processing. The VGA monitor is used to
display the resulting processed data from the SDRAM [2].

The camera system was designed using Quartus Il version 13.0 software and implemented on the
Altera DE2-70 development platform [4]. An Altera Cyclone 11 2C70 FPGA device was chosen as the core
for the system. In order to build a complete architecture, the Quartus Il system-on-programmable-chip

Journal homepage: http://beei.org/index.php/EEI

224 a ISSN: 2302-9285

(SOPC) builder was used to design the camera system architecture [5, 6]. The external peripherals included
in the camera system design were a TRDB-D5M camera and a VGA monitor [7]. The camera system
represents the main step in designing the video processing system. A good camera system reduces the errors
occurring in the video processing system. Figure 1 shows the block diagram for the camera system.

Avalon MM

Nios Il E‘:{iﬂ; r = a
ios

TRDB-D5M
C::>

SDRAM _—
Video RGR [Controller} [SDRAM]
=
Resampler
Pixel RGB E:?DZOET
Resampler
pu— Video
. | VGA — Scaler,
" | controller
- <= | ITAG-UART | = ‘

Figure 1. Block diagram for camera system

v

The video decoder is an important peripheral in the video processing system [8]. The captured
image or video data must be in the binary form of the RGB format to enable further processing steps [14].
The first step of the capture process is to convert the captured image or video, in a specific format size and in
RGB format, via the video decoder driver, prior to further processing by another driver. A video clipper
driver and a video scaler driver are used to convert the captured image or video data into a suitable format
size before the main processing takes place. A video RGB resampler converts the data between 24-bit and
16-bit formats [8]. The different formats are suitable for different type of video processing systems. Using a
suitable number format increases the processing speed and prevents noise. The converted data are
temporarily stored in static random-access memory (SRAM) through the SRAM controller [9], before being
stored in SDRAM, displayed on the monitor or submitted for video processing.

The processing algorithm is the most important part of the video processing system, since retrieval
of incorrect data will cause noise or corruption of data. The designed algorithm uses the C/C++ language in
the Nios Il software build tool for Eclipse [10]. The complete algorithm design is downloaded into the Nios
Il processor through the Joint Test Action Group universal asynchronous receiver/transmitter (JTAG-UART)
core. The video data are retrieved from the SRAM, undergo some binary data processing and are stored in the
SDRAM before running a VGA monitor display conversion step.

The SDRAM has another important role in storing the converted data from the drivers [4, 6, 11].
The SDRAM chip on the Altera DE2-70 board is able to store 8 Mbytes of data and the memory is organized
in the form 1M*16 bits*4 banks [4, 6]. The SDRAM controller is included in the architecture design of the
camera system in order to access the SDRAM chip [4, 6, 9]. Signals will be generated from the SDRAM
controller to deliver read or write instructions from the Cyclone Il 2C70 processor to the SDRAM chip. In
the greyscale conversion video processing design, the processing data occupied less than 8 Mbytes.
Therefore, only one SDRAM chip was used in this design. Future processing of large quantities of data will
make full use of the SDRAM chip on the Altera DE2-70 board, which is in fact two SDRAM chips each
storing 16 Mbytes of data [4, 6].

The final part of the video processing system is displaying the processing output. The data are
retrieved from SDRAM and undergo some format conversion before being displayed on the VGA monitor.
The pixel RGB resampler driver plays an important role in RGB format conversion [8]. The data are
converted to a suitable RGB format before being sent to the video scaler driver and VGA controller. The
video scaler driver changes the resolution of the data into a suitable format size while the VGA controller
enables data display by creating the timing signals required by the VGA monitors. A more detailed
explanation of the data flow will be given in section III.

In this article, studies using several different video processing designs and application platforms are
surveyed. The surveyed papers include: implementation of Laplacian video processing using the Virtex-6
ML605 Evaluation Kit [11], image encryption operations implementation on the Cyclone 11 EP2C35 FPGA
[12], FPGA implementation for image processing algorithms using the Xilinx System Generator [13], image

Bulletin of Electr Eng and Inf, Vol. 8, No. 1, March 2019 : 223 — 230

Bulletin of Electr Eng and Inf ISSN: 2302-9285 a 225

encryption system implementation using the Virtex-5 VC5VLX110T FPGA [14] and optical seam tracking
system implementation on an FPGA [15]. In section Il, existing video processing design and application
platforms are discussed. Comparisons are made, and advantages and disadvantages are discussed at the end
of the section. Section Il presents a full description of the proposed video processing method. In section 1V,
the output of the design and details of the data conversion are described.

2. LITERATURE REVIEW

A simple video processing test on the complete camera system is important to prevent errors
occurring in the architecture design. In this paper, a simple greyscale conversion is chosen as the main test
for the complete camera system design. The existing greyscale-related usage implementation on FPGA
presented in [11] provides a good reference for greyscale-related usage. The author used the greyscale video
as a benchmark video to perform Laplacian filtering. The chosen pixel number of the video was 40*40
pixels, and the system was implemented using the Virtex-6 ML605 as FPGA. The designed system frame
rate was up to 10,000 frames per second, at an operating frequency of 0.31 MHz. A DDR3 SDRAM was
chosen as the main memory for storing the preprocessed and processed videos. Figure 2 shows the block
diagram for the system configuration design to the interrupt, with an ML605 board.

[

[
S +“_.|I|
Ethemet

DDR3 i N
SDRAM r S g B :

+— ANXH bus connection
=== [Nrcct momory Acccss
% -—-—-% Configuration interface

.................. * Intermipt line
*— - —» (igahit ethemet

Figure 2. Block diagram for system configuration design to interrupt, with ML605 board

The author of [12] proposed an image encryption operation implemented on a Cyclone 11 EP2C35
FPGA. The image encryption is performed based on two types of architecture design using 14-bit or 8-bit
formats. The author used a greyscale image as a benchmark image to perform the image encryption
operation. Two greyscale images with sizes 128*128 were used, and the memory storage was performed on
M4K RAM. The total number of logic elements used in this process was 11,675 and total memory usage was
262 or 144 bits. A flow diagram of the image encryption system process is shown in Figure 3.

Addres .
HOF with E;::lryphl[m
seerstpial [T 282128
128x128
= B i Data
HMOR with
sacrat pixsl H
Addes Eﬁ:a:?;hfm
28x128

Figure 3. Flow diagram of the image encryption process

Various types of image processing algorithms implemented on FPGA are proposed by the author in
[13]. The author used Xilinx System Generator for MATLAB to perform the simulation processes. The

SOC integration for video processing application (Chan Boon Cheng)

226 a ISSN: 2302-9285

image processing algorithms included image enhancement, threshold, contrast stretching, edge detection and
boundary extraction for greyscale and colour image algorithms. A greyscale image was used as a benchmark
image for some of the image processing and for the output. The image size for processing was between
238*212 pixels and 700*500 pixels.

The author in [14] proposed a cryptographic algorithm using a matrix approach implemented on a
Virtex-5 VC5VLX110T FPGA. The system used greyscale and RGB colour images to carry out the
encryption process. The encryption system was configured with a 125-MHz clock and implemented on three
types of architecture designs, i.e., 8-bit, 16-bit and 24-bit systems. A few steps of the matrix function process
are taken before the final encryption process. The encryption process is going through two dimensional
wavelet transform, compression and encryption.

Optical seam tracking with parallel image processing implemented on a camera system is proposed
by the author in [15]. The proposed system is implemented on a Xilinx Spartan-6 FPGA and performs in a
real-time application. The real-time application processing system must use a greyscale image as the
benchmark before proceeding with further processing steps. The processing frame rate of the system is up to
1,000 frames per second and the clock rate is set to 48 MHz.

Table 1 shows a comparison between the different types of greyscale processing applications on
various types of FPGA. All these systems have the common feature that the processing algorithm relates to a
greyscale application. Each of the greyscale processing applications is different, but some of the usages are
similar. For example, the system in [11] used a greyscale video as a benchmark video, those in [12, 14, 15]
used the greyscale image as benchmark image and in [13] the greyscale image is an output of the processing
system. The systems in [11-14] are of the simulation type, where the process is run using a benchmark video
or image, while the system in [15] is a real-time application system.

Table 1. Comparison of discussed systems
Features [11] [12] [13] [14] [15]
Year 2013 2014 2013 2014 2015
Cyclone Il EP2C35 Xilinx Spartan6

Development Platform Virtex-6 FPGA Xilinx FPGA Virtex-5 FPGA FPGA

Function Laplacian Filtering ~ Image Encryption Image Segmentation Image Encryption _(?rp;;ﬁai\:];eam

Function Application Simulation Simulation Simulation Simulation Real Time
Application

Greyscale Usage Benchmark Video Benchmark Image Output Benchmark Image Benchmark Image

Hardware Language Not Stated Not Stated HDL Matrix Operation ~ Not Stated

'(\fg'm”m Frame Rate ;5000 Not Stated Not Stated Not Stated 1,000

Clock Rate (MHz) 100 50 Not Stated 125 48

Memory Usage DDR3-SDRAM M4KRAM Not Stated Not Stated BRAM

Software ModelSim, MATLAB Quartus I1 7.2 IS <HinX System Microblaze MATLAB

Generator, MATLAB

The systems in [13, 14] do not have any memory usage due to the fact that the process is running on
the FPGA company-provided simulation software. This process is able to test the algorithm design before
applying it on a real FPGA platform. The simulation software chosen in [13] is Xilinx System Generator for
MATLAB, while in [14] it is MicroBlaze. Both of these are able to test the processing algorithm design in
order to reduce the code upload time to the FPGA.

The greyscale image enhancement in [13] is a suitable reference for the proposed method discussed
in section I1l. The resize step and the preprocessing and post-processing pixel conversion steps discussed
provide a relevant reference for image resizing before running the greyscale conversion process. An
architecture design with different bit formats discussed in [12, 14], is used in the proposed greyscale
conversion system. The different bit formats in the conversion setting will affect the output and the
processing speed of the system. More detail on the greyscale conversion system design is given in section I11.

3. RESEARCH METHOD

In section Ill, the camera system architecture design is briefly discussed and the greyscale
conversion algorithm design [13, 15] is explained, giving details of the data extraction and data processing.
The camera system design starts with capturing the image or video using the TRDB-D5M camera. The block
diagram for the architecture design is shown in Figure 1. The architecture design was developed using the
Qsys tools provided in the Quartus Il version 13.0 software.

Bulletin of Electr Eng and Inf, Vol. 8, No. 1, March 2019 : 223 — 230

Bulletin of Electr Eng and Inf ISSN: 2302-9285 a 227

The first step in the capture process is putting the video through the decoder driver to convert the
captured image or video into a 2592*1944 format size with colour (8 (bits)*1 (plane)), in RGB format. The
data are converted to a 320*240 format size via the video clipper driver and video scaler driver. After the
data are converted, the video RGB resampler further converts the data between 24-bit and 16-bit formats.
These conversions are required because processing is faster with the 320*240 format size and the 16-bit
format. Figure 4 shows the architecture design flow for the video during the conversion process.

Video In Video | Video RGB I
E » Decoder » Scaler ‘ Resampler,
TRDB-D5M '
VGA Pixel RGB Pixel Buffer ‘
- ‘ [Controller] ‘ [Resamn\er] - [DMA] l
SDRAM
. -

i

SDRAM

Figure 4. The architecture design flow for the video during image data conversion

In order to be suitable for the greyscale conversion system, the original data from the pixel buffer
DMA module are extracted and processing is performed before saving to SDRAM. The algorithm design is
implemented in Nios 1l SBT for Eclipse. The SDRAM has an important role in storing the preprocessing and
processed data with a 320*240 format size and a 16-bit format. Without the processing system, the data are
stored directly into SDRAM from the pixel buffer DMA module. When the data are correctly stored, the
pixel buffer DMA will read the data and send the image stored in the memory to the VGA controller. At the
same time, the image will undergo format conversion from 16 bits to 30 bits via the pixel RGB resampler
driver. When the VGA controller receives the data, it will create a timing signal compatible with the VGA
monitor attached to the VGA port on the DE2-70 board, to enable display. The architecture design for data
storage and display is shown in Figure 4. The blue arrow shows the flow of data between the memory, the
DMA driver and the VGA controller.

The completed architecture design is loaded onto the Altera DE2-70 board through the programmer.
When the design is confirmed as working well, by capturing the video using the TRDB-D5M camera and
displaying it on the VGA monitor, the greyscale conversion algorithm design can proceed. The greyscale
conversion system is designed in the C language using Nios Il software build tools for Eclipse. In order to
perform greyscale conversion of the captured video, the original 16-bit binary image data needs to be
converted depending on the formulae (1) [16]. The converted binary data are then saved into SDRAM before
running the resampler and displaying the output on the VGA monitor. RGB values indicate different
locations within the 16 bits of binary data. The data locations are shown in Figure 5.

Greyscale = R+(3;+B (D)

MSB LSB

15 14 13 12 u 10] 8 7 3 5 4 3 2 1 o

R4|R3lR2 BlIBO

R1|R0 GS|G4|GS|GZ

GllGO B4|83|82

¢—— Red Values ——p{€«——— Green Values ——»(¢——Blue Values —|
5Bis 6Bis 5Bis
Decimal Range 0 to 31 Decimal Range0 to 63 Decimal Range 0 to 31
Or 32 Possibie Vaiues Or 64 Possibie Vaiues Or 32 Possible Values

Figure 5. Binary data locations of RGB

In order to ensure binary data converted equal to formulae, data for red values must move 11 bits to
the right, using “AND” to multiply by 0x1f in order to replace blue values with red values. Data for green

SOC integration for video processing application (Chan Boon Cheng)

228 a ISSN: 2302-9285

values will then shift left by 6 bits and using “AND” to multiply by Ox1f makes the sixth bit of the green
values 0, and bits 1-5 of the green values is remained and blue values using “AND” to multiply by 0x1f. In
the final step of the design, the red, green and blue values us sum up and devided by 3 and shift to the origin
location of each values. The C programming coding for the data conversion is shown in Figure 10.

4. RESULTS AND ANALYSIS

In this section, the output of the proposed architecture of the camera system and the algorithm for
greyscale conversion are discussed in detail. The architecture was loaded onto the Altera FPGA board after
the design was completed. The initialization of the board is shown in Figure 6. The architecture includes a
user trigger switch, designated switch 0. Trigger pin switch 1 is used to reset the camera capture recording
function to prevent data corruption displaying on the VGA monitor. Figure 7 shows the initialization of the
architecture design on the VGA monitor display without triggering switch 0.

Figure 6. Initialization of camera system on Figure 7. Initialization of camera system on
Altera DE2-70 VGA monitor

When switch 1 is triggered, the camera system is able to perform live capture and display on the
VGA monitor. When the video captured by the camera is correctly displayed on the VGA monitor, the
architecture design is considered to be complete. Figure 8 shows the captured result, correctly displayed on
the VGA monitor.

Figure 8. Video captured by camera, correctly displayed on VGA monitor

In order to ensure correct data flow between the architecture modules, SignalTap Il is used to
analyse the data generated and the locations for saving. Figure 9 shows the generated output of SignalTap II.

Bulletin of Electr Eng and Inf, Vol. 8, No. 1, March 2019 : 223 — 230

Bulletin of Electr Eng and Inf ISSN: 2302-9285 a 229

SDRAM Write Enable (WE) is a one-bit signal to inform SDRAM to perform the write data action. The
video DMA|slave_writedata is the last module, which generates 32 bits of image data before writing to
SSRAM, while SDRAM_ wire_dq is the final storage location of the preprocessing or processed data before
display on the VGA monitor. Figure 9 shows that the data are correctly stored in SDRAM. Since the
SDRAM is able to store 16 bits of data at once, the 32 bits of data generated by the video DMA will be split
into two 16-bit items. The waveform data generated by SignalTap 11 are shown in hexadecimal form.

log: 2017/09/28 22:44:22 #0
Node |ES 2564 2565 2566 2567 2568 2569 2570
Type [Alias | Hame [EE 5434 5435 5436 5437 5438 5438 5440 EQ £ B B B B =57 |

sdram_wire_vie_n I | J | J | J

- sdram_wire_dq 684Dh L= 0003 TE3Bh A 0003h
#- .. video_dmalslave_wriedata 0003736h 36333636h_j, 3C3E3830h 1 383838380 Y_080B7E38H 00037 38h

e

B

Figure 9. SignalTap Il analysis result

The highlighted columns in Figure 9 show that the data are correctly stored in SDRAM. As an
example, the data highlighted in blue in the video DMA show that the vidleo DMA module has generated 32
bits of hexadecimal data: 00037E36h. When the data are saved in 16-bit form in SDRAM via the SDRAM
controller, the 32 bits of hexadecimal data 00037E26h are split into two 16-bit hexadecimal data items, i.e.,
7E36h and 0003h. SDRAM_dqg shows that the data are split correctly and stored in the 16-bit SDRAM
module. The same situation occurs for the data highlighted in green. The data between the blue and green
rectangles in the video DMA are useless data caused by processing delays, which are not saved
into SDRAM.

Greyscale conversion is the last step of the proposed system. The greyscale conversion methods
refer to the method discussed in section Ill, i.e., greyscale=(R+G+B)/3. The data are read from the SSRAM,
undergo data processing and are saved into SDRAM. Figure 10 shows the C programming steps which
perform the greyscale conversion with 16-bit data processing, as designed using Nios Il software build tools
for Eclipse.

The greyscale conversion processed data replace the data in SDRAM. The data are retrieved and
pass through the RGB resampler module before being sent to the VGA monitor through the VGA controller.
Figure 11 shows the result of the greyscale conversion, where the camera system output is replaced by the
greyscale image output on the VGA monitor. The total number of logic element used in this process is 4258
of 68416 which is 6% of total logic element. Total registered used is 2807 and total thermal power
dissipation is 215.06mW.

L. Problems 7] Tasks S Comsole | [Properties M) Nios Il Console = [T

Sew,_configuraon - cable: USB Skaster on locahost [USB 0] device ID: § nstance 1D 0 name: jtaguart 0

Wetable Smatinet | T4:1

Figure 10. The C code for greyscale conversion Figure 11. Greyscale conversion output

5. CONCLUSION

In this paper, a simple greyscale conversion method is implemented on a complete camera system.
The images were captured using a TRDB-D5M camera and displayed on a VGA monitor. The results show
that the camera system works perfectly. A simple video processing greyscale conversion, designed using the

SOC integration for video processing application (Chan Boon Cheng)

230 a ISSN: 2302-9285

C programming language in Eclipse, was implemented on the camera system. The results demonstrated that
the greyscale conversion design was able to retrieve and replace the data in the camera system. The results, as
seen on the VGA monitor, show that simple processing can be implemented on the camera system. The logic
element used is less compared to the existing works. Therefore, the results of the proposed method form a
good basis for future moving-object tracking studies.

REFERENCES

[1] Terasic, “TRDB-D5M: Terasic DSM Hardware Specification”, April 2008.

[2] C.Liand W. Chen, “A novel FPGA-based hand gesture recognition system,” Journal of Convergence Information
Technology, vol. 7, no. 9, pp. 221-229, 2012.

[3] Nai-Jian Wang “A Real-time Multi-face Detection System Implemented on FPGA”, 2012 IEEE International
Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2012) November 4-7, 2012

[4] ALTERA: “DE2-70 Development and Education Board: User Manual” v1.08, 2009.

[5] ALTERA: “SOPC Builder: User Guide”, v1.0, Dec., 2010.

[6] ALTERA: “Quartus II Handbook” v14.1, Dec. 2014.

[7]1 Terasic, “TRDB-D5M: Terasic DSM Hardware Specification”, April 2008.

[8] ALTERA: “Video IP Cores for Altera DE-Series Boards”, October 2015.

[91 X. Ma, M. Li, H. Wang, and I. Gong, "Design and implementation of video image encryption system based on
FPGA," in Computer Science and Automation Engineering (CSAE), 2012 IEEE International Conference on, 2012,
pp. 68-72.

[10] ALTERA: “Nios II Software Developer’s Handbook”, v13.1, Jan., 2014.

[11] Z. Ping Ang, A. Kumar, Y. Ha, "High speed video processing using fine-grained processing on FPGA platform,"
Proceedings of the IEEE 21st Annual International Symposium on Field-Programmable Custom Computing
Machines, 2013, pp. 85-88.

[12] Rajagopalan, S., H.N. Upadhyay, J.B.B. Rayappan and R. Amirtharajan, "Dual cellular automata on FPGA: An
image encryptors chip,” Res. J. Inform. Technol., 6: 223-236, 2014.

[13] Neha P.Raut, Prof A.V.Gokhale “FPGA implementation of image processing algorithms using Xilinx System
Generator”, IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 2, Issue 4 (May- June 2013), PP
26- 36, e-ISSN: 2319-4200, p-ISSN No.:2319-4197.

[14] Ramirez-Torres, M., Murguia, J., Mejia-Carlos, M.: Fpga implementation of a reconfigurable image encryption
system. In: ReConFigurable Computing and FPGAs (ReConFig), 2014 International Conference on. pp. 1-4. IEEE
(2014).

[15] Tero Santti, Jonne K. Poikonen, Olli Lahdenoja, Mika Laiho, Ari Paasio (2015); Online seam tracking for laser
welding with a vision chip and FPGA enabled camera system, IEEE International Symposium on Circuits and
Systems (ISCAS), May 2015, 1985-1988.

[16] A. Giines, H. Kalkan and E. Durmus, “Optimizing the color-to-grayscale conversion for image classification”,
Signal, Image and Video Processing, Publisher Springer London, (2015) Oct., pp. 1-8, 29.

BIOGRAPHIES OF AUTHORS

Chan Boon Cheng is currently an M.Sc. by research student at School of Microelectronic
Engineering, University Malaysia Perlis. In 2015, he completed his B.Eng. degree in
Electronic Engineering at University Malaysia Perlis, Malaysia. He has served Sensmaster
SDN.BHD as graduate trainee and failure analysis assistance in 2014. His research interest
includes object tracking algorithm and implementation using SOC devices.

Associate Professor Dr. Asral Bahari Jambek is a member of the School of Microelectronics
Engineering, Universiti Malaysia Perlis (UniMAP), and was a Programme Chairperson for the
Electronics Engineering Degree Programme, UniMAP. He has more than 15 years experience
in integrated circuit and system design in both the industry and academic sectors, and has been
involved at various levels of VLSI design such as transistor modelling, digital circuit design,
analogue circuit design, logic synthesis and physical place and route, architecture design and
algorithm development.Currently, he is actively researching new techniques to minimize
power consumption in portable system-on-chip design. His research interests include
integrated circuits and systems design, digital signal processing (DSP), low power algorithms
and architectures design, and image and video processing.

Bulletin of Electr Eng and Inf, Vol. 8, No. 1, March 2019 : 223 — 230

