Bulletin of Electrical Engineering and Informatics
Vol. 9, No. 1, February 2020, pp. 247~255
ISSN: 2302-9285,DOI: 10.11591/eei.v9i1.1269 a 247

PHP modernization approach generating KDM models from
PHP legacy code

Amine Moutaouakkil, Samir Mbarki
MISC Laboratory, Faculty of Science, Ibn Tofail University BP133, Kenitra, Morocco

Article Info ABSTRACT

Article history: With the rise of new web technologies such as web 2.0, Jquery, Bootstrap.
. Modernizing legacy web systems to benefit from the advantages of the new

Received Jul 15,2018 technologies is more and more relevant. The migration of a system from

Revised Oct 7,2019 an environment to another is a time and effort consuming process; it involves

Accepted Nov 12,2019 a complete rewrite of the application adapted to the target platform.

To realize this migration in an automated and standardized way,

many approaches have tried to define standardized engineering processes.
Keywords: Architecture Driven Modernization (ADM) defines an approach
to standardize and automate the reengineering process. We defined an ADM

Abstract syntax tree approach to represent PHP web applications in the highest level
meta-model (ASTM) of abstraction models. To do this, we have used software artifacts as an entry
Architecture-driven point. This paper describes the extraction process, which permits discovering
modernization (ADM) and understanding of the legacy system. Moreover, generate models
Knowledge discovery model to represent the system in an abstract way.

(KDM)

. . . This is an open access article under the CC BY-SA license.
Model-driven engineering

Reverse engineering @ ® @

Corresponding Author:

Amine Moutaouakkil,

MISC Laboratory, Faculty of Science, Ibn Tofail University,
BP133, Kenitra, Morocco.

Email: amine.moutaouakkil@hotmail.fr

1. INTRODUCTION

Basing more and more their business on IT solutions, organizations using web technology systems
have to modernize their legacy systems to be aligned with competition. Most of websites and web
applications are written in PHP language (82,5% in 2017-02-11). The need to immigrate both from and to
this language is increasing. The PHP language is constantly evolving, more and more new frameworks
and new standartsare available to use which make users in the need of migrating their PHP Web applications
to anotherlanguage or to a new version of PHP language.

It is necessary to have a standardized an automatic process of reengineering to minimize time
and costs. Currently, there is an initiative to standardize and automate the reengineering process.
The Architecture-driven Modernization (ADM) [1] is an Object Management Group (OMG) [2] initiative
related to the reverse engineering domain. This initiative has been proposed to enhance the classical reverse
engineering processes by introducing the Model-driven Architecture (MDA) [3] concepts. In the same way
that the MDA approach provides a leading role to the models, the ADM approach introduces several
conceptsto formalize the RE [4] processes based on models too.

It is necessary to realize methods for migrating PHP Web applications, but currently there are no
relied ADM based methodesmakingit. We defined an ADM based approach to represent PHP source code in
form of KDM models. This approach has taken advantage of the potential of the Architecture Driven
Moderization (ADM) to modeling the knowledge, which will be extracted from the legacy
program artifacts.

Journal homepage: http://beei.org

https://creativecommons.org/licenses/by-sa/4.0/

248 a ISSN: 2302-9285

In this article, we describe the generation of models to represent the legacy system at the highest
level of abstraction. The rest of this article is organized as follows: section 2 describes the process based on
the ADM approach and describes their different phases. In section 3, we illustrate our proposed approach by
a case study. Section 4 makes the analysis of the process result. In section 5 we list some interesting related
works. Finally, section 6 concludes the work and presents the perspectives.

2. RESEARCH METHOD
- MDRE

Model Driven Reverse Engineering (MDRE) [5] is the application of Model Driven Engineering
(MDE) principles and techniques to Reverse Engineering (RE) in order to get model based views from legacy
systems. The MDRE is based on two main phases: Model Discovery which is extracting information from
source code by using parsers, and then represent this information in form of models. And Model
Understanding which is applying Model to Model transformations on extracted information to get a higher
abstraction level presentation of the information.
- ADM

Architecture Driven Modernization (ADM) is an initiative proposed by OMG to standardize
and automate the reengineering process. ADM is based on three standards meta-models to represent
the information involved in a software reengineering process. In the current study, only Abstract Syntax Tree
Meta-Model (ASTM) [6] and Knowledge Discovery Meta-Model (KDM) standards are useful for
the purpose. ASTM allows modeling the legacy code in form of Abstract Syntax Tree.
Otherwise, KDM [7] allows defining models at a higher abstraction level representing semantic information
abouta software system.

2.1. Model discovery

Discovering the legacy system corresponding PSM models by analyze the source code constitutes
the first step. PSM models define the structures and relationships between system elements. UML Class
Diagram for example is a PSM model that can be generated by many UML tools: PowerAMC [8],
Enterprise-Architect [9], Objecteering [10], Modelio [11], Papyrus [12]. Model discovery allows
the extraction of information from the system and its representation in concrete models such as ASTM.
To represent the information in PHP code in the form of ASTM models, we have found out that we have to
write a PHP Discoverer first so that existing PHP code can be represented as a model. After dealing with
the creation and operation of discoverers. It turned out that the incorporation and imple mentation
is extremely complex.

We looked for alternative ways to transform PHP code into models. After searching and trying
the available parsers for PHP, one of them was interesting, glayzzle/php-parser [13]. This parser is working
well, it parses the PHP code and gets an abstract syntax tree (AST), and obtained tree is an intermediate step
to get ASTM models aftertransformations.

2.2. Model understanding

Model understanding consists in the transformation of models to get higher abstract models.
In our study, we need to make two transformations: Apply model-to-model transformation on the AST tree
to get ASTM model, which is a Generic ASTM model. Apply model-to-model transformation on the ASTM
model to get KDM model.
- QVT Transformation Standard

QVT (Query/View/Transformation) [14] is a standard set of languages for model
transformation defined by the OMG. The QVT standard defines three model transformation languages.
All of them operate on models which conform to Meta-Object Facility (MOF) 2.0 metamodels;
the transformation states which metamodels are used. QVT Operational which we use, it is an imperative
language designed for writing unidirectional transformations. Models extraction process a shown in Figure 1.
- ASTM

Current OMG ASTM meta-model needs to be simplified, to make the transformation easier for our
example. ASTM meta-modelprovided by OMG and Simplified one a shown Figure 2.
- KDM

KDM meta-model provided by OMG a shown in Figure 3. KDM is a standard defined by OMG for
the representation of software systems. This meta-model allows to represent systems artifacts in a high level
of abstraction. The KDM specification consists of 12 packages that are arranged into the following
four layers [15].

Bulletin of Electr Eng & Inf, Vol. 9, No. 1, February 2020: 247 — 255

Bulletin of Electr Eng & Inf

ISSN: 2302-9285

249

T T v v v ow v ow ow ow ow v i}

BEEEEEEES

PHP

Source

code

Specific Generic KDM
> ASTM > ASTM > Model
Model Model
M2M M2M
Parser . .
Tranformation Tranformation

—_—

Figure 1. Models extraction process

4|8 AstrMM |
» fim ExtendedMetaData
» H RightHandSideType
» H StatementsType
» B ArgumentsType

» B ArgumentsTypel

» H BodyDeclarationsType

» H BodyType

| f2 ASTMCore| » E ExpressionType

#8 Definition » H ExpressionTypel
i Syntax » H ExpressionType?
8 Core » H ExpressionTyped
i Xmi » [ExpressionTyped
i Source » [ExpressionTyped
£ Expression » [ExpressionType6
#t Types » B ExpressionType?
i Directives » H ExpressionTyped
i Semantics » B ExpressionTyped
1 Statement » B FieldType

Figure 2. ASTM meta-modelprovided by OMG and simplified one

platform
build
conceptual
data

event
structure

I

= N

Infrastructure

Abstractions Conceptual Layer

Layer

Core,
KDM,
Source

Plateform
Program
Elements Layer

Resource
Layer

Figure 3. KDM meta-modelprovided by OMG

PHP modernization approach generating KDM models from PHP legacy code (Amine Moutaouakkil)

250 a ISSN: 2302-9285

Inour approach, we focuson Code package. The Code package represents programming elementsas used by
programming languages: data types, procedures, classes, methods, variables, etc.
- AST toASTM QVT-O Transformation script

We have defined a mapping table between AST model elements and ASTM model elements.
Based on the mapping table, we have written a QVT-O transformation script to map AST model elements to
ASTM model elements. AST elementsto ASTM elementsmappinga shown in Table 1.

Table 1. AST elementsto ASTM elements mapping

AST element ASTM element
ChildrenType OwnedElements Typel
BodyType BodyDeclarationsType

ArgumentsType ParametersType

modeltype AST uses 'http://AstMM’;
modeltype ASTM uses 'http://AstmMM’;
transformation ast2astm(inast: AST, out ASTM);
main() {
ast.objects([AST::ChildrenType]->map R1();
ast.objects()[AST::BodyType]->map R2();

}
mapping AST::ChildrenType::R1() : ASTM::OwnedElementsTypel {

if (self kind<>'inline’){ name :=self.name;}
}

mapping AST::BodyType::R2(): ASTM::BodyDeclarationsType {
if (self.kind="property'{
type := self.kind;
modifier := self.map R21();
fragments :=self.map R22();

}

else if (self.kind='method"){

type := self.kind;

modifier := self.map R21();

fragments := self.map R22();
parameters :=self.arguments.map R23();

}

- ASTM to KDM QVT-O Transformation script

We have defined a mapping table between ASTM model elements and KDM model elements.
Based on the mapping table, we have written a QVT-O transformation script to map ASTM model elements
to KDM model elements. ASTM elements to KDM elements mappinga shown in Table 2.

modeltype ASTM uses 'http://AstmMM’;
modeltype KDM uses 'http://KdmMM;
transformation astm2kdm(inastm : ASTM, out KDM);

main() {
astm.rootObjects()[ASTM::Model]->map RO();
astm.objects()[ASTM::ModifierType]->map R1();
astm.objects()[ASTM::OwnedElementsTypel]->map R2();
astm.objects()[ASTM::OwnedElementsTypel]->map R21();
}

mapping ASTM::Model::R0() : KDM::code::CodeModel { name :=self.name; }
mapping ASTM::ModifierType::R1() : KDM::kdm::Attribute {
value := self.visibility.toString();

Bulletin of Electr Eng & Inf, Vol. 9, No. 1, February 2020: 247 — 255

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 251

}
mapping ASTM::OwnedElementsTypel::R2() : KDM::code::CodeElement when {self.type<>'Class’{
name :=self.name; }
mapping ASTM::OwnedElementsTypel::R21(): KDM::code::ClassUnit when {self.type="Class’H{
var a :=new KDM::code::ClassUnit();
a.name :=self.name;
result.codeElement :=a;

Table 2. ASTM elements to KDM elements mapping
ASTM element KDM element
ModifierType kdm:Attribute
OwnedElementsTypel code:CodeElement
OwnedElements Typel code:ClassUnit
BodyDeclarationsType code:CodeElement
ParametersType code:ParameterUnit

3. RESULTS AND DISCUSSION
3.1. Case study example

Models will be extracted from a simple PHP class: Vegetable Class which has two properties,
a constructor and two functions.

<?php
class Vegetable {
private $edible;
private $color;
public function __construct($edible, $color) {
$this->edible = (int) $edible;
$this-> color = (int) $color;
}
public functionis_edible () { return $this-> edible; }
public function what_color () { return $this-> color; }

}
7>
3.2. Result
<?xml version="1.0" encoding="UTF-8" ?> <kind>property</kind>
<root> <name>color</name>
<kind>program</kind> <value/>
<children> <isAbstract>false</isAbstract>
<kind>class</kind> <isFinal>false</isFinal>
<name>Vegetable</name> <visibility>private</visibility>
<isAnonymous>false</isAnonymous> <isStatic>false</isStatic>
<extends/> </body>
<implements/> <body>
<body> <kind>method</kind>
<kind>property</kind> <name>__construct</name>
<name>edible</name> <arguments>
<value/> <kind>parameter</kind>
<isAbstract>false</isAbstract> <name>edible</name>
<isFinal>false</isFinal> <value/>
<visibility>private</visibility> <type/>
<isStatic>false</isStatic> <byref>false</byref>
</body> <variadic>false</variadic>
<body> <nullable>false</nullable>
</arguments>
AST tree

PHP modernization approach generating KDM models from PHP legacy code (Amine Moutaouakkil)

252 a

ISSN: 2302-9285

- ASTM model

<?xml version="1.0" encoding="UTF-8"7>

<xmi:XMI xmi:version="2.0" xmIns:xmi="http://www.omg.org/ XM 1"
xmIins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns: AstmMM="http://AstmMM"

xsi:schemalLocation="http://AstmMM

platform:/plugin/org.eclipse.m2m.qvto.ast2astm/metamodel/ASTM .ecore">

<AstmMM:OwnedElementsTypel name="Vegetable"

type="Class" />

<AstmMM:BodyDeclarationsType>
<modifier visibility="private"/>
<fragments name="edible"/>
<type>property</type>
</AstmMM:BodyDeclarationsType>
<AstmMM:BodyDeclarationsType>
<modifier visibility="private"/>
<fragments name="color"/>
<type>property</type>
</AstmMM:BodyDeclarationsType>
<AstmMM:BodyDeclarationsType>
<modifier visibility="public"/>
<fragments name="__construct"/>
<parametersname="edible"/>
<parametersname="color"/>
<type>method</type>

</AstmMM:BodyDeclarationsType>
<AstmMM:BodyDeclarationsType/>
<AstmMM:BodyDeclarationsType>

<modifier visibility="public"/>

<fragments name="isValid"/>

<parameters/>

<type>method</type>
</AstmMM:BodyDeclarationsType>
<AstmMM:BodyDeclarationsType/>
<AstmMM:ExpressionType/>
<AstmMM:ExpressionType operator="="/>
<AstmMM:ExpressionType operator="="/>
<AstmMM:ExpressionType/>
<AstmMM:ExpressionType/>
<AstmMM:ExpressionType/>

</xmi:XMI>

- KDM model

<?xml version="1.0" encoding="UTF-8"7>

<xmi:XMI xmi:version="2.0" xmIns:xmi="http://www.omg.org/ XM 1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmIns:code="http://mww.eclipse.org/MoDisco/kdm/code"
xmIns:kdm="http://www.eclipse.org/MoDisco/kdm/kdm"
xsi:schemaLocation="http://www.eclipse.org/MoDisco/kdm/code
platform:/plugin/org.eclipse.m2m.qvto.astm2kdm/metamodel/KDM .ecore#//code

http://www.eclipse.org/MoDisco/kdm/kdm

platform:/plugin/org.eclipse.m2m.qvto.astm2kdm/metamodel/KDM .ecore#//kdm">

<code:CodeModelname="Vegetable Project"/>

<kdm:Attribute value="private"/>
<kdm:Attribute value="private"/>
<kdm:Attribute value="public"/>
<kdm:Attribute value="public"/>
<kdm:Attribute value="public"/>
<code:CodeElement/>
<code:CodeElement/>
<code:CodeElement/>
<code:CodeElement/>
<code:CodeElement/>
<code:ClassUnit>

<codeElement xsi:type="code:ClassUnit" name="Vegetable"/>

</code:ClassUnit>

<code:CodeElement name="edible"/>
<code:CodeElement name="color"/>
<code:CodeElement name="__construct"/>
<code:ParameterUnit name="edible"/>
<code:ParameterUnit name="color"/>
<code:CodeElement/>

<code:CodeElement name="is_edible"/>

Bulletin of Electr Eng & Inf, Vol. 9, No. 1, February 2020: 247 — 255

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 253

<code:ParameterUnit/>
<code:CodeElement/>
<code:CodeElement name="what_color"/>
<code:ParameterUnit/>
<code:CodeElement/>

</xXmi:XMI>

3.3. Related works

More and more research projects use the mechanisms offered by the MDA, in among these projects

include eg:

- ADM-Based Hybrid Model Transformation for Obtaining UML Models from PHP Code [16]

- Improving Consistency of UML Diagrams and Its Implementation Using Reverse Engineering
Approach[17]

- Model Driven Approach based on Interaction Flow Modeling Language to Generate Rich Internet
Applications [18]

- Java Swing Modernization Approach: Complete Abstract Representation based on Static and
Dynamic Analysis [19]

- A Model Driven Reverse Engineering Framework for Extracting Business Rules out of
a Java Application [20]

- Reverse Engineering Applied to CMS-Based Web Applications Coded in PHP: A Proposal
of Migration [21]

- Combining UML Class and Activity Diagrams for MDA Generation of MVC 2 Web Applications [22]

- MoDisco Project [23]

ADM-Based Hybrid Model Transformation for Obtaining UML Models from PHP Code (2019).
This paper describes a model transformation process performing reverse engineering of PHP web
applications. Model to model transformations are implemented using ATL [24] (Atlas Transformation
Language). The obtained modelsare expressed in UML.

Improving Consistency of UML Diagrams and Its Implementation Using Reverse Engineering
Approach (2018). This paper describse the development of a tool that improve the consistency between
Unified Modeling Language (UML) design models and its C# implementation using reverse engineering
approach. This approach also takes code source as input applying to it the reverse eenginering process,
and then it takes the models as input too to verivying the consistency. This approach does not generate
models asartifacts.

A Model Driven Approach based on Interaction Flow Modeling Language to Generate Rich Internet
Applications (2016). This paper presents a model driven approach to generat GUI for Rich Internet
Application. Using the language IFML adopted by the Object Management Group, Query View
Transformation (QVT) for model transformations and Acceleo for code generation, the approach allows
to generate a RIA focusing on the graphical aspect of the application.

Java Swing Modernization Approach: Complete Abstract Representation based on Static and
Dynamic Analysis (2016). This paper defines an ADM-based method to define abstract models representing
the GUI knowledge and automate the generation of these models through transformation chains. A Model
Driven Reverse Engineering Framework for Extracting Business Rules out of a Java Application (2012). This
paper proposes a process of extracting business rules out of a Java application,
by identifying business rules from the source code. And presenting the extracted business rules
through models.

Reverse Engineering Applied to CMS-Based Web Applications Coded in PHP: A Proposal
of Migration (2013). This paper defines an ADM-based method for migrating CMS-based Web applications.
This method is focused on open-source CMS which are implemented in PHP. It makes the implementation
of the reverse engineering phase: ASTM models are extracted from the PHP code by text-to-model (T2M)
transformation implemented by a source code parser, KDM models are generated from the previous ASTM
models by means of M2M transformations. and by using M2M transformations the CMS Model which
conforms to the CMS Common Metamodel is generated. M2M transformations are implemented using ATL
Transformation Language.

Combining UML Class and Activity Diagrams for MDA Generation of MVC 2 Web Applications
(2013). This paper defines an MDA based process that integrates UML class diagram and Activity diagram,
in order to generate MVVC2 web model of e-commerce web applications. Model-to-model transformations
are implemented using ATL Transformation Language, Model to text transformation are implemented using
JET language [25].

PHP modernization approach generating KDM models from PHP legacy code (Amine Moutaouakkil)

254 a ISSN: 2302-9285

MoDisco Project (2014). The eclipse plugin « Modisco » provides the capability of extracting
information from Java software artifacts, The model resulting will conform to meta-model included in
Modisco. Model of the abstract syntax tree can be obtained first from the program (based on a generic
meta-model such as OMG ASTM), After a transformation, Model of KDM meta-model is obtained;
KDM allows representing the entire software system and all its entities at both structural and behavioral
levels. Extracted models by Modisco are Ecore models. Modisco is one of rare tools that have allowed to
apply the ADM principles in real. Unfortunately, the current Modisco version does not include any specific
supportfor PHP code.

3.4. Analysis and discussion

In the ADM approach, KDM plays an important role. It is a meta-model that allows to represent
the structuraland semantic aspect of the software systemsartifactsin a high level of abstraction. As a system
is represented in form of KDM models, the immigration to another platform becomes easier. We can notice
thatobtained result correspondsto our aim goal.

According to the related works we can conclude that ADM approaches that extract ASTM and
KDM models from PHP code and others platforms are rare. Modisco approach stops at the Specific ASTM
level. "java" models extract by Modisco from Java projects are not generic ASTM models. The approach
" Reverse Engineering Applied to CMS-Based Web Applications Coded in PHP: A Proposal of Migration"
is based on in the use of the Xtext [26] plugin witch allows defining the syntax of language, wich involves
to write the PHP syntax in Xtext Grammar. Writing the PHP syntax in xtext language is a hard and
time-consuming task, this task is avoided in our approach by using glayzzle php-parser, our approach helpsto
gain this consumed time.

4. CONCLUSION

This paper presented an ADM based approach that allow obtaining KDM models from PHP source
code. This approach is composed of two phases: 1) extracting AST tree from source code, in this phase
the trees are extracted from the PHP code by text-to-model (T2M) transformationsimplemented by a source
code parser, 2) Generation of ASTM models, KDM models are generated from the previous ASTM models
by means of M2M transformations.For the implementation of the tree extraction phase, we have used
Galyzzle PHP Parser which has allowed us to extract AST tree from the source code.For the implementation
of the Generation of ASTM and KDM models phase we have implemented transformation rules using
QVT-Operational language. The major contribution is the use of the QVT transformation language defined
by the OMG. In addition, using this approach can reduce the necessary time to make the PHP web
applications migration. As a future work, we will perform similar approach to other platform and compare
high-level abstract results.

REFERENCES

[1] Architecture Driven Modernization (ADM). [Online]. Available: http://adm.omg.org/

[2] Object Management Object (OMG). [Online]. Available: http:/iwww.omg.org/

[3] Model Driven Architecture (MDA). [Online]. Available: http://www.omg.org/mda/

[4] E. J. Chikofsky, J. H. Cross. “Reverse engineering and design recovery: a taxonomy," in IEEE Software, vol. 7,
no.1, pp. 13-17, 1990.

[5] C. Raibulet, F. Arcelli Fontana and M. Zanoni, "Model-Driven Reverse Engineering Approaches: A Systematic
Literature Review," in IEEE Access, vol. 5, pp. 14516-14542, 2017.

[6] Abstract Syntax Tree Meta-Model specification of the OMG. [Online]. Available:
http://iwww.omg.org/spec/ASTM/1.0/

[71 Knowledge Discovery Meta-Model specification of the OMG. [Online]. Available:
http:/Aww.omg.org/spec/KDM/1.3

[8] Comsoft-direct, PowerAMC. [Online]. Available: http://www.comsoft-direct.fr/poweramc

[9] Sparx systems, Enterprise architect. [Online]. Available: http://www.sparxsystems.com.au/products/ea

[10] Obijecteering, Objecteering, the model driven development tool. [Online]. Available: http://www.objecteering.com/

[11] Modeliosoft, the open source modeling environment, Modelio. [Online]. Available: https://iwww.modelio.org/

[12] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard, P.Tessier, R. Schnekenburger, H. Dubois, F. Terrier.
“Papyrus UML: an open source toolset for MDA”. Proc. of the Fifth European Conference on Model-Driven
Architecture Foundations and Applications (ECMDA-FA 2009), pp. 1-4, 2009.

[13] NodeJS PHP Parser - extract AST or tokens (PHP5 and PHP7). [Online]. Available: http://glayzzle.com/
php-parser/

[14] QVT (Query/View/Transformation) standard of the OMG. [Online]. Available: http://iwww.omg.org/spec/QVT/1.3/

Bulletin of Electr Eng & Inf, Vol. 9, No. 1, February 2020: 247 — 255

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 255

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]
[26]

KDM Technical Overview from KDM Analytics. [Online]. Available:
http://kdmanalytics.com/resources/standards/kdm/technical-overview/

A. Elmounadi, N. Berbiche, N. Sefiani, N. EI Moukhi, “ADM-Based Hybrid Model Transformation for Obtaining
UML Models from PHP Code,” International Journal of Embedded Systems (1JES), vol. 7, no. 1, pp. 32-41, 2019.
V. Kaliappan, N. Mohd Ali, “Improving Consistency of UML Diagrams and Its Implementation Using Reverse
Engineering Approach,” Bulletin of Electrical Engineering and Informatics (BEEI). Vol. 7, no. 4,
pp. 665-672, 2018.

S. S. Roubi, M. Erramdani, S. Mbarki, “A Model Driven Approach based on Interaction Flow Modeling Language
to Generate Rich Internet Applications,” International Journal of Electrical and Computer Engineering (1JECE),
vol. 6, no. 6, pp. 3073-3079, 2016.

Z. Gotti, S. Mbarki, “Java Swing Modernization Approach: Complete Abstract Representation based on Static and
Dynamic Analysis,” Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT).
Lisbon. Vol. 1, pp. 210-219, 2016.

V. Cosentino, J. Cabot, P. Albert, P. Bauquel, J. Perronnet, “A Model Driven Reverse Engineering Framework for
Extracting Business Rules out of a Java Application,” Proceeding RuleML'12 Proceedings of the 6th international
conference on Rules on the Web: research and applications. Montpellier, pp. 17-31, 2012.

F. Trias, V. de Castro, M. Lépez-Sanz, and E. Marcos, “Reverse Engineering Applied to CMS-Based Web
Applications Coded in PHP: A Proposal of Migration. Evaluation of Novel Approaches to Software Engineering,”
8th International Conference (ENASE). Angers, pp. 241-256, 2013.

M. Rahmouni, S. Mbarki, “Combining UML Class and Activity Diagrams for MDA Generation of MVC 2 Web
Applications,” International Review on Computers and Software (IRECOS). vol 8, no. 4, pp. 949-957, 2013.

H. Bruneliere, J. Cabota, G. Dupé, F. Madiot, “MoDisco: a Model Driven Reverse Engineering Framework:
Information and Software Technology,” Elsevier, vol 56, no. 8, pp.1012-1032, 2014

S. Mbarki, M. Rahmouni, “Validation of ATL Transformation to Generate a Reliable MVC2 Web Models,”
International Journal of Engineering and Applied Computer Science (IJEACS), vol. 2, no. 3, pp.83-91, 2017.
Eclipse Foundation, “JET.” [Online]. Available: http://www.eclipse.org/modeling/m2t/?project=jet

Xtext project. [Online]. Available: http://www.eclipse.org/Xtext

PHP modernization approach generating KDM models from PHP legacy code (Amine Moutaouakkil)

http://www.eclipse.org/Xtext

