
Bulletin of Electrical Engineering and Informatics

Vol. 9, No. 1, February 2020, pp. 247~255

ISSN: 2302-9285, DOI: 10.11591/eei.v9i1.1269  247

Journal homepage: http://beei.org

PHP modernization approach generating KDM models from

PHP legacy code

Amine Moutaouakkil, Samir Mbarki
MISC Laboratory, Faculty of Science, Ibn Tofail University BP133, Kenitra, Morocco

Article Info ABSTRACT

Article history:

Received Jul 15, 2018

Revised Oct 7, 2019

Accepted Nov 12, 2019

 With the rise of new web technologies such as web 2.0, Jquery, Bootstrap.

Modernizing legacy web systems to benefit from the advantages of the new

technologies is more and more relevant. The migration of a system from

an environment to another is a time and effort consuming process; it involves
a complete rewrite of the application adapted to the target platform.

To realize this migration in an automated and standardized way,

many approaches have tried to define standardized engineering processes.

Architecture Driven Modernization (ADM) defines an approach

to standardize and automate the reengineering process. We defined an ADM
approach to represent PHP web applications in the highest level

of abstraction models. To do this, we have used software artifacts as an entry

point. This paper describes the extraction process, which permits discovering

and understanding of the legacy system. Moreover, generate models

to represent the system in an abstract way.

Keywords:

Abstract syntax tree

meta-model (ASTM)

Architecture-driven

modernization (ADM)

Knowledge discovery model

(KDM)

Model-driven engineering

Reverse engineering

This is an open access article under the CC BY-SA license.

Corresponding Author:

Amine Moutaouakkil,

MISC Laboratory, Faculty of Science, Ibn Tofail University ,

BP133, Kenitra, Morocco.

Email: amine.moutaouakkil@hotmail.fr

1. INTRODUCTION

Basing more and more their business on IT solutions, organizations using web technology systems

have to modernize their legacy systems to be aligned with competition. Most of websites and web

applications are written in PHP language (82,5% in 2017-02-11). The need to immigrate both from and to

this language is increasing. The PHP language is constantly evolving, more and more new frameworks

and new standarts are available to use which make users in the need of migrating their PHP Web applications

to another language or to a new version of PHP language.

It is necessary to have a standardized an automatic process of reengineering to minimize time

and costs. Currently, there is an initiative to standardize and automa te the reengineering process.

The Architecture-driven Modernization (ADM) [1] is an Object Management Group (OMG) [2] initiative

related to the reverse engineering domain. This initiative has been proposed to enhance the classical reverse

engineering processes by introducing the Model-driven Architecture (MDA) [3] concepts. In the same way

that the MDA approach provides a leading role to the models, the ADM approach introduces several

concepts to formalize the RE [4] processes based on models too.

It is necessary to realize methods for migrating PHP Web applications, but currently there are no

relied ADM based methodes making it. We defined an ADM based approach to represent PHP source code in

form of KDM models. This approach has taken advantage of the potential of the Architecture Driven

Modernization (ADM) to modeling the knowledge, which will be extracted from the legacy

program artifacts.

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 9, No. 1, February 2020 : 247 – 255

248

In this article, we describe the generation of models to represent the legacy system at the highest

level of abstraction. The rest of this article is organized as follows: section 2 describes the process based on

the ADM approach and describes their different phases. In section 3, we illustrate our proposed approach by

a case study. Section 4 makes the analysis of the process result. In section 5 we list some interesting related

works. Finally, section 6 concludes the work and presents the perspectives.

2. RESEARCH METHOD

- MDRE

Model Driven Reverse Engineering (MDRE) [5] is the application of Model Driven Engineering

(MDE) principles and techniques to Reverse Engineering (RE) in order to get model based views from legacy

systems. The MDRE is based on two main phases: Model Discovery which is extracting information from

source code by using parsers, and then represent this information in form of models. And Model

Understanding which is applying Model to Model transformations on extracted information to get a higher

abstraction level presentation of the information.

- ADM

Architecture Driven Modernization (ADM) is an initiative proposed by OMG to standardize

and automate the reengineering process. ADM is based on three standards meta -models to represent

the information involved in a software reengineering process. In the current study, only Abstract Syntax Tree

Meta-Model (ASTM) [6] and Knowledge Discovery Meta -Model (KDM) standards are useful for

the purpose. ASTM allows modeling the legacy code in form of Abstract Syntax Tree.

Otherwise, KDM [7] allows defining models at a higher abstraction level representing semantic information

about a software system.

2.1. Model discovery

Discovering the legacy system corresponding PSM models by analyze the source code constitutes

the first step. PSM models define the structures and relationships between system elements. UML Class

Diagram for example is a PSM model that can be generated by many UML tools: PowerAMC [8],

Enterprise-Architect [9], Objecteering [10], Modelio [11], Papyrus [12]. Model discovery allows

the extraction of information from the system and its representation in concrete models such as ASTM.

To represent the information in PHP code in the form of ASTM models, we have found out that we have to

write a PHP Discoverer first so that existing PHP code can be represented as a model. After dealing with

the creation and operation of discoverers. It turned out that the incorporation and imple mentation

is extremely complex.

We looked for alternative ways to transform PHP code into models. After searching and trying

the available parsers for PHP, one of them was interesting, glayzzle/php-parser [13]. This parser is working

well, it parses the PHP code and gets an abstract syntax tree (AST), and obtained tree is an intermediate step

to get ASTM models after transformations.

2.2. Model understanding

Model understanding consists in the transformation of models to get higher abstract models.

In our study, we need to make two transformations: Apply model-to-model transformation on the AST tree

to get ASTM model, which is a Generic ASTM model. Apply model-to-model transformation on the ASTM

model to get KDM model.

- QVT Transformation Standard

QVT (Query/View/Transformation) [14] is a standard set of languages for model

transformation defined by the OMG. The QVT standard defines three model transformation languages.

All of them operate on models which conform to Meta-Object Facility (MOF) 2.0 metamodels;

the transformation states which metamodels are used. QVT Operational which we use, it is an imperative

language designed for writing unidirectional transformations. Models extraction process a shown in Figure 1.

- ASTM

Current OMG ASTM meta -model needs to be simplified, to make the transformation easier for our

example. ASTM meta-model provided by OMG and Simplified one a shown Figure 2.

- KDM

KDM meta-model provided by OMG a shown in Figure 3. KDM is a standard defined by OMG for

the representation of software systems. This meta -model allows to represent systems artifacts in a high level

of abstraction. The KDM specification consists of 12 packages that are arranged into the following

four layers [15].

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

PHP modernization approach generating KDM models from PHP legacy code (Amine Moutaouakkil)

249

Figure 1. Models extraction process

Figure 2. ASTM meta -model provided by OMG and simplified one

Figure 3. KDM meta-model provided by OMG

PHP

Source

code

Specific

ASTM

Model

Generic

ASTM

Model

KDM

Model

M2M

Tranformation

Parser

M2M

Tranformation

Core,

KDM,

Source

Action

Code

UI

Data

Plateform

Event

Conceptual
Infrastructure

Layer Abstractions

Layer

Resource

Layer

Program

Elements Layer

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 9, No. 1, February 2020 : 247 – 255

250

In our approach, we focus on Code package. The Code package represents programming elements as used by

programming languages: data types, procedures, classes, methods, variables, etc.

- AST to ASTM QVT-O Transformation script

We have defined a mapping table between AST model elements and ASTM model elements.

Based on the mapping table, we have written a QVT-O transformation script to map AST model elements to

ASTM model elements. AST elements to ASTM elements mapping a shown in Ta ble 1.

Table 1. AST elements to ASTM elements mapping
AST element ASTM element

ChildrenType OwnedElementsType1
BodyType BodyDeclarationsType

ArgumentsType ParametersType

modeltype AST uses 'http://AstMM';

modeltype ASTM uses 'http://AstmMM';

transformation ast2astm(in ast : AST, out ASTM);

main() {

 ast.objects()[AST::ChildrenType]->map R1();

 ast.objects()[AST::BodyType]->map R2();

 …

}

mapping AST::ChildrenType::R1() : ASTM::OwnedElementsType1 {

 if (self.kind<>'inline'){ name := self.name; }

}

mapping AST::BodyType::R2() : ASTM::BodyDeclarationsType {

 if (self.kind='property'){

 type := self.kind;

 modifier := self.map R21();

 fragments := self.map R22();

 }

 else if (self.kind='method'){

 type := self.kind;

 modifier := self.map R21();

 fragments := self.map R22();

 parameters := self.arguments.map R23();

 }

}

…

- ASTM to KDM QVT-O Transformation script

We have defined a mapping table between ASTM model elements and KDM model elements.

Based on the mapping table, we have written a QVT-O transformation script to map ASTM model elements

to KDM model elements. ASTM elements to KDM elements mapping a shown in Table 2.

modeltype ASTM uses 'http://AstmMM';

modeltype KDM uses 'http://KdmMM';

transformation astm2kdm(in astm : ASTM, out KDM);

main() {

 astm.rootObjects()[ASTM::Model]->map R0();

 astm.objects()[ASTM::ModifierType]->map R1();

 astm.objects()[ASTM::OwnedElementsType1]->map R2();

 astm.objects()[ASTM::OwnedElementsType1]->map R21();

 …

}

mapping ASTM::Model::R0() : KDM::code::CodeModel { name := self.name; }

mapping ASTM::ModifierType::R1() : KDM::kdm::Attribute {

value := self.visibility.toString();

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

PHP modernization approach generating KDM models from PHP legacy code (Amine Moutaouakkil)

251

}

mapping ASTM::OwnedElementsType1::R2() : KDM::code::CodeElement when {self.type<>'Class'}{

name := self.name; }

mapping ASTM::OwnedElementsType1::R21() : KDM::code::ClassUnit when {self.type='Class'}{

 var a := new KDM::code::ClassUnit();

 a .name := self.name;

 result.codeElement := a;

}

…

Table 2. ASTM elements to KDM elements mapping
ASTM element KDM element

ModifierType kdm:Attribute
OwnedElementsType1 code:CodeElement
OwnedElementsType1 code:ClassUnit

BodyDeclarationsType code:CodeElement
ParametersType code:ParameterUnit

3. RESULTS AND DISCUSSION

3.1. Case study example

Models will be extracted from a simple PHP class: Vegetable Class which has two properties,

a constructor and two functions.

<?php

class Vegetable {

 private $edible;

 private $color;

 public function __construct($edible, $color) {

 $this->edible = (int) $edible;

 $this-> color = (int) $color;

 }

 public function is_edible () { return $this-> edible; }

 public function what_color () { return $this-> color; }

}

?>

3.2. Result

AST tree

<?xml version="1.0" encoding="UTF-8" ?>

<root>

 <kind>program</kind>

 <children>

 <kind>class</kind>

 <name>Vegetable</name>

 <isAnonymous>false</isAnonymous>

 <extends/>

 <implements/>

 <body>

 <kind>property</kind>

 <name>edible</name>

 <value/>

 <isAbstract>false</isAbstract>

 <isFinal>false</isFinal>

 <visibility>private</visibility>

 <isStatic>false</isStatic>

 </body>

 <body>

 <kind>property</kind>

 <name>color</name>

 <value/>

 <isAbstract>false</isAbstract>

 <isFinal>false</isFinal>

 <visibility>private</visibility>

 <isStatic>false</isStatic>

 </body>

 <body>

 <kind>method</kind>

 <name>__construct</name>

 <arguments>

 <kind>parameter</kind>

 <name>edible</name>

 <value/>

 <type/>

 <byref>false</byref>

 <variadic>false</variadic>

 <nullable>false</nullable>

 </arguments>

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 9, No. 1, February 2020 : 247 – 255

252

- ASTM model

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmlns:AstmMM="http://AstmMM"

xsi:schemaLocation="http://AstmMM

platform:/plugin/org.eclipse.m2m.qvto.ast2astm/metamodel/ASTM.ecore">

 <AstmMM:OwnedElementsType1 name="Vegetable"

type="Class" />

<AstmMM:BodyDeclarationsType>

 <modifier visibility="private"/>

 <fragments name="edible"/>

 <type>property</type>

 </AstmMM:BodyDeclarationsType>

 <AstmMM:BodyDeclarationsType>

 <modifier visibility="private"/>

 <fragments name="color"/>

 <type>property</type>

 </AstmMM:BodyDeclarationsType>

 <AstmMM:BodyDeclarationsType>

 <modifier visibility="public"/>

 <fragments name="__construct"/>

 <parameters name="edible"/>

 <parameters name="color"/>

 <type>method</type>

 </AstmMM:BodyDeclarationsType>

 <AstmMM:BodyDeclarationsType/>

 <AstmMM:BodyDeclarationsType>

 <modifier visibility="public"/>

 <fragments name="isValid"/>

 <parameters/>

 <type>method</type>

 </AstmMM:BodyDeclarationsType>

 <AstmMM:BodyDeclarationsType/>

 <AstmMM:ExpressionType/>

 <AstmMM:ExpressionType operator="="/>

 <AstmMM:ExpressionType operator="="/>

 <AstmMM:ExpressionType/>

 <AstmMM:ExpressionType/>

 <AstmMM:ExpressionType/>

</xmi:XMI>

- KDM model

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance"

xmlns:code="http://www.eclipse.org/MoDisco/kdm/code"

xmlns:kdm="http://www.eclipse.org/MoDisco/kdm/kdm"

xsi:schemaLocation="http://www.eclipse.org/MoDisco/kdm/code

platform:/plugin/org.eclipse.m2m.qvto.astm2kdm/metamodel/KDM.ecore#//code

http://www.eclipse.org/MoDisco/kdm/kdm

platform:/plugin/org.eclipse.m2m.qvto.astm2kdm/metamodel/KDM.ecore#//kdm">

 <code:CodeModel name="Vegetable_Project"/>

 <kdm:Attribute value="private"/>

 <kdm:Attribute value="private"/>

 <kdm:Attribute value="public"/>

 <kdm:Attribute value="public"/>

 <kdm:Attribute value="public"/>

 <code:CodeElement/>

 <code:CodeElement/>

 <code:CodeElement/>

 <code:CodeElement/>

 <code:CodeElement/>

 <code:ClassUnit>

 <codeElement xsi:type="code:ClassUnit" name="Vegetable"/>

 </code:ClassUnit>

 <code:CodeElement name="edible"/>

 <code:CodeElement name="color"/>

 <code:CodeElement name="__construct"/>

 <code:ParameterUnit name="edible"/>

 <code:ParameterUnit name="color"/>

 <code:CodeElement/>

 <code:CodeElement name="is_edible"/>

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

PHP modernization approach generating KDM models from PHP legacy code (Amine Moutaouakkil)

253

 <code:ParameterUnit/>

 <code:CodeElement/>

 <code:CodeElement name="what_color"/>

 <code:ParameterUnit/>

 <code:CodeElement/>

</xmi:XMI>

3.3. Related works

More and more research projects use the mechanisms offered by the MDA, in among these projects

include eg:

- ADM-Based Hybrid Model Transformation for Obtaining UML Models from PHP Code [16]

- Improving Consistency of UML Diagrams and Its Implementation Using Reverse Engineering

Approach [17]

- Model Driven Approach based on Interaction Flow Modeling Language to Generate Rich Internet

Applications [18]

- Java Swing Modernization Approach: Complete Abstract Representation based on Static and

Dynamic Analysis [19]

- A Model Driven Reverse Engineering Framework for Extracting Business Rules out of

a Java Application [20]

- Reverse Engineering Applied to CMS-Based Web Applications Coded in PHP: A Proposal

of Migration [21]

- Combining UML Class and Activity Diagrams for MDA Generation of MVC 2 Web Applications [22]

- MoDisco Project [23]

ADM-Based Hybrid Model Transformation for Obtaining UML Models from PHP Code (2019).

This paper describes a model transformation process performing reverse engineering of PHP web

applications. Model to model transformations are implemented using ATL [24] (Atlas Transformation

Language). The obtained models are expressed in UML.

Improving Consistency of UML Diagrams and Its Implementation Using Reverse Engineering

Approach (2018). This paper describse the development of a tool that improve the consistency between

Unified Modeling Language (UML) design models and its C# implementation using reverse engineering

approach. This approach also takes code source as input a pplying to it the reverse eenginering process,

and then it takes the models as input too to verivying the consistency. This approach does not generate

models as artifacts.

A Model Driven Approach based on Interaction Flow Modeling Language to Generate Rich Internet

Applications (2016). This paper presents a model driven approach to generat GUI for Rich Internet

Application. Using the language IFML adopted by the Object Management Group, Query View

Transformation (QVT) for model transformations and Acceleo for code generation, the approach allows

to generate a RIA focusing on the graphical aspect of the application.

Java Swing Modernization Approach: Complete Abstract Representation based on Sta tic and

Dynamic Analysis (2016). This paper defines an ADM-based method to define abstract models representing

the GUI knowledge and automate the generation of these models through transformation chains. A Model

Driven Reverse Engineering Framework for Extracting Business Rules out of a Java Application (2012). This

paper proposes a process of extracting business rules out of a Java application,

by identifying business rules from the source code. And presenting the extracted business rules

through models.

Reverse Engineering Applied to CMS-Based Web Applications Coded in PHP: A Proposal

of Migration (2013). This paper defines an ADM-based method for migrating CMS-based Web applications.

This method is focused on open-source CMS which are implemented in PHP. It makes the implementation

of the reverse engineering phase: ASTM models are extracted from the PHP code by text-to-model (T2M)

transformation implemented by a source code parser, KDM models are generated from the previous ASTM

models by means of M2M transformations. and by using M2M transformations the CMS Model which

conforms to the CMS Common Metamodel is generated. M2M transformations are implemented using ATL

Transformation Language.

Combining UML Class and Activity Diagrams for MDA Generation of MVC 2 Web Applications

(2013). This paper defines an MDA based process that integrates UML class diagram and Activity diagram,

in order to generate MVC2 web model of e-commerce web applications. Model-to-model transformations

are implemented using ATL Transformation Language, Model to text transformation are implemented using

JET language [25].

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 9, No. 1, February 2020 : 247 – 255

254

MoDisco Project (2014). The eclipse plugin « Modisco » provides the capability of extracting

information from Java software artifacts, The model resulting will conform to meta -model included in

Modisco. Model of the abstract syntax tree can be obtained first from the program (based on a generic

meta-model such as OMG ASTM), After a transformation, Model of KDM meta -model is obtained;

KDM allows representing the entire software system and all its entities at both structural and behavioral

levels. Extracted models by Modisco are Ecore models. Modisco is one of rare tools that have allowed to

apply the ADM principles in rea l. Unfortunately, the current Modisco version does not include any specific

support for PHP code.

3.4. Analysis and discussion

In the ADM approach, KDM plays an important role. It is a meta -model that allows to represent

the structural and semantic aspect of the software systems artifacts in a high level of abstraction. As a system

is represented in form of KDM models, the immigration to another platform becomes easier. We can notice

that obtained result corresponds to our aim goal.

According to the related works we can conclude that ADM approaches that extra ct ASTM and

KDM models from PHP code and others platforms are rare. Modisco approach stops at the Specific ASTM

level. "java" models extract by Modisco from Java projects are not generic ASTM models. The approach

" Reverse Engineering Applied to CMS-Based Web Applications Coded in PHP: A Proposal of Migration"

is based on in the use of the Xtext [26] plugin witch allows defining the syntax of language, wich involves

to write the PHP syntax in Xtext Grammar. Writing the PHP syntax in xtext language is a h ard and

time-consuming task, this task is avoided in our approach by using glayzzle php-parser, our approach helps to

gain this consumed time.

4. CONCLUSION

This paper presented an ADM based approach that allow obtaining KDM models from PHP source

code. This approach is composed of two phases: 1) extracting AST tree from source code, in this phase

the trees are extracted from the PHP code by text-to-model (T2M) transformations implemented by a source

code parser, 2) Generation of ASTM models, KDM models are generated from the previous ASTM models

by means of M2M transformations.For the implementation of the tree extraction phase, we have used

Galyzzle PHP Parser which has allowed us to extract AST tree from the source code.For the implementation

of the Generation of ASTM and KDM models phase we have implemented transformation rules using

QVT-Operational language. The major contribution is the use of the QVT transformation language defined

by the OMG. In addition, using this approach can reduce the necessary time to make the PHP web

applications migration. As a future work, we will perform similar approach to other platform and compare

high-level abstract results.

REFERENCES
[1] Architecture Driven Modernization (ADM). [Online]. Available: http://adm.omg.org/
[2] Object Management Object (OMG). [Online]. Available: http://www.omg.org/

[3] Model Driven Architecture (MDA). [Online]. Available: http://www.omg.org/mda/

[4] E. J. Chikofsky, J. H. Cross. “Reverse engineering and design recovery: a taxonomy," in IEEE Software, vol. 7,

no.1, pp. 13-17, 1990.

[5] C. Raibulet, F. Arcelli Fontana and M. Zanoni, "Model-Driven Reverse Engineering Approaches: A Systematic
Literature Review," in IEEE Access, vol. 5, pp. 14516-14542, 2017.

[6] Abstract Syntax Tree Meta-Model specification of the OMG. [Online]. Available:

http://www.omg.org/spec/ASTM/1.0/

[7] Knowledge Discovery Meta-Model specification of the OMG. [Online]. Available:

http://www.omg.org/spec/KDM/1.3
[8] Comsoft-direct, PowerAMC. [Online]. Available: http://www.comsoft-direct.fr/poweramc

[9] Sparx systems, Enterprise architect. [Online]. Available: http://www.sparxsystems.com.au/products/ea

[10] Objecteering, Objecteering, the model driven development tool. [Online]. Available: http://www.objecteering.com/

[11] Modeliosoft, the open source modeling environment, Modelio. [Online]. Available: https://www.modelio.org/

[12] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard, P.Tessier, R. Schnekenburger, H. Dubois, F. Terrier.
“Papyrus UML: an open source toolset for MDA”. Proc. of the Fifth European Conference on Model-Driven

Architecture Foundations and Applications (ECMDA-FA 2009), pp. 1-4, 2009.

[13] NodeJS PHP Parser - extract AST or tokens (PHP5 and PHP7) . [Online]. Available: http://glayzzle.com/

php-parser/

[14] QVT (Query/View/Transformation) standard of the OMG. [Online]. Available: http://www.omg.org/spec/QVT/1.3/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

PHP modernization approach generating KDM models from PHP legacy code (Amine Moutaouakkil)

255

[15] KDM Technical Overview from KDM Analytics. [Online]. Available:

http://kdmanalytics.com/resources/standards/kdm/technical-overview/

[16] A. Elmounadi, N. Berbiche, N. Sefiani, N. El Moukhi, “ADM-Based Hybrid Model Transformation for Obtaining
UML Models from PHP Code,” International Journal of Embedded Systems (IJES), vol. 7, no. 1, pp. 32-41, 2019.

[17] V. Kaliappan, N. Mohd Ali, “Improving Consistency of UML Diagrams and Its Implementation Using Reverse

Engineering Approach,” Bulletin of Electrical Engineering and Informatics (BEEI). Vol. 7, no. 4,

pp. 665-672, 2018.

[18] S. S. Roubi, M. Erramdani, S. Mbarki, “A Model Driven Approach based on Interaction Flow Modeling Language
to Generate Rich Internet Applications,” International Journal of Electrical and Computer Engineering (IJECE),

vol. 6, no. 6, pp. 3073-3079, 2016.

[19] Z. Gotti, S. Mbarki, “Java Swing Modernization Approach: Complete Abstract Representation based on Static and

Dynamic Analysis,” Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT).

Lisbon. Vol. 1, pp. 210-219, 2016.
[20] V. Cosentino, J. Cabot, P. Albert, P. Bauquel, J. Perronnet, “A Model Driven Reverse Engineering Framework for

Extracting Business Rules out of a Java Application,” Proceeding RuleML'12 Proceedings of the 6th international

conference on Rules on the Web: research and applications. Montpellier, pp. 17-31, 2012.

[21] F. Trias, V. de Castro, M. López-Sanz, and E. Marcos, “Reverse Engineering Applied to CMS-Based Web

Applications Coded in PHP: A Proposal of Migration. Evaluation of Novel Approaches to Software Engineering,”
8th International Conference (ENASE). Angers, pp. 241-256, 2013.

[22] M. Rahmouni, S. Mbarki, “Combining UML Class and Activity Diagrams for MDA Generation of MVC 2 Web

Applications,” International Review on Computers and Software (IRECOS). vol 8, no. 4, pp. 949-957, 2013.

[23] H. Brunelière, J. Cabota, G. Dupé, F. Madiot, “MoDisco: a Model Driven Reverse Engineering Framework:

Information and Software Technology,” Elsevier, vol 56, no. 8, pp.1012-1032, 2014
[24] S. Mbarki, M. Rahmouni, “Validation of ATL Transformation to Generate a Reliable MVC2 Web Models,”

International Journal of Engineering and Applied Computer Science (IJEACS), vol. 2, no. 3, pp.83-91, 2017.

[25] Eclipse Foundation, “JET.” [Online]. Available: http://www.eclipse.org/modeling/m2t/?project=jet

[26] Xtext project. [Online]. Available: http://www.eclipse.org/Xtext

http://www.eclipse.org/Xtext

